37 resultados para Nonconvex linear differential inclusions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes an alternative methodology for identification of aeroelastic stability in a range of varying parameters. Analysis is performed in time domain based on Lyapunov stability and solved by convex optimization algorithms. The theory is outlined and simulations are carried out on a benchmark system to illustrate the method. The classical methodology with the analysis of the system's eigenvalues is presented for comparing the results and validating the approach. The aeroelastic model is represented in state space format and the unsteady aerodynamic forces are written in time domain using rational function approximation. The problem is formulated as a polytopic differential inclusion system and the conceptual idea can be used in two different applications. In the first application the method verifies the aeroelastic stability in a range of air density (or its equivalent altitude range). In the second one, the stability is verified for a rage of velocities. These analyses are in contrast to the classical discrete analysis performed at fixed air density/velocity values. It is shown that this method is efficient to identify stability regions in the flight envelope and it offers promise for robust flutter identification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish general conditions for the unique solvability of nonlinear measure functional differential equations in terms of properties of suitable linear majorants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the controllability and stabilizability problem for control systems described by a time-varyinglinear abstract differential equation with distributed delay in the state variables. An approximate controllability propertyis established, and for periodic systems, the stabilization problem is studied. Assuming that the semigroup of operatorsassociated with the uncontrolled and non delayed equation is compact, and using the characterization of the asymptoticstability in terms of the spectrum of the monodromy operator of the uncontrolled system, it is shown that the approximatecontrollability property is a sufficient condition for the existence of a periodic feedback control law that stabilizes thesystem. The result is extended to include some systems which are asymptotically periodic. Copyright © 2014 John Wiley &Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG