110 resultados para Minimum quantity lubrication


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, different methods of cutting fluid application are used in turning of a difficult-to-machine steel (SAE EV-8). Initially, a semisynthetic cutting fluid was applied using a conventional method (i.e. overhead flood cooling), minimum quantity of cutting fluid, and pulverization. A lubricant of vegetable oil (minimum quantity of lubricant) was also applied using the minimum quantity method. Thereafter, a cutting fluid jet under high pressure (3.0 MPa) was singly applied in the following regions: chip-tool interface, top surface of the chip (between workpiece and chip) and tool-workpiece contact. Moreover, two other methods were used: an interflow between conventional application and chip-tool interface jet (combined method) and, finally, three jets simultaneously applied. In order to carry out these tests, it was necessary to set up a high-pressure system using a piston pump for generating a cutting fluid jet, a venturi for fluid application (minimum quantity of cutting fluid and minimum quantity of lubricant) and a nozzle for cutting fluid pulverization. The output variables analyzed included tool life, surface roughness, cutting tool temperature, cutting force, chip form, chip compression rate and machined specimen microstructure. Among the results, it can be observed that the tool life increases and the cutting force decreases with the application of cutting fluid jet, mainly when it is directed to the chip-tool interface. Excluding the methods involving jet fluid, the conventional method seems to be more efficient than other methods of low pressure, such as minimum quantity of volume and pulverization, when considering just the cutting tool wear. © 2013 IMechE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different methods of cutting fluid application are used on turning of a difficult-tomachine steel (SAE EV-8). A semi-synthetic cutting fluid was applied using a conventional method, minimum quantity of cutting fluid (MQCF), and pulverization. By the minimum quantity method was also applied a lubricant of vegetable oil (MQL). Thereafter, a cutting fluid jet under high pressure (3.0 MPa) was singly applied in the following regions: chip-tool interface; top surface of the chip; and tool-workpiece contact. Two other methods were used: an interflow between conventional application and chip-tool interface jet and, finally, three jets simultaneously applied. In order to carry out these tests, it was necessary to set up a high pressure system using a piston pump for generating a cutting fluid jet, a Venturi for fluid application (MQCF and MQL), and a nozzle for cutting fluid pulverization. The output variables analyzed included tool life, surface roughness, cutting tool temperature, cutting force, chip form, chip compression rate and machined specimen microstructure. It can be observed that the tool life increases and the cutting force decreases with the application of cutting fluid jet, mainly when it is directed to the chip-tool interface. Excluding the methods involving jet fluid, the conventional method seems to be more efficient than other methods of low pressure. © (2013) Trans Tech Publications, Switzerland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efficient implementation of recycling networks requires appropriate logistical structures for managing the reverse flow of materials from users to producers. The steel sheet distributor studied had established a protocol for scrap recovery with the steel plant and its customers. The company invested in producing containers, hiring a specialized labor force and in purchasing trucks for container transportation to implement the logistics network for recycling. That network interconnected the company with two kinds of customers: the ones returning scrap and the ones who preferred to continue business-as-usual. The logistical network was analyzed using emergy synthesis, and the data obtained were used to evaluate and compare the system's environmental costs and benefits from the perspective of the distributor and the steel plant operator. The use of emergy ternary diagrams provided a way to assess recycle strategies to compare the relative economic and environmental benefits of the logistical network implemented. The minimum quantity of scrap that the distributor must recover to improve environmental benefits was determined allowing decision on whether it is worth keeping the system running. The new assessment method proposed also may help policy-makers to create strategies to reward or incentive users of reverse logistics, and help to establish regulations, by decreasing taxes or stimulating innovation, for effectively implement the National Policy on Solid Waste. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The non-ferrous materials have got so many mechanical, physical and chemical advantageous properties so that is provided to them consolidated position in industry. In this context, aluminium alloys have been seen a lot on many applications of engineering areas – specially on automotive, aeronautical and aerospace due to their main properties such as low density, high corrosion resistance, favorable structure weight / material resistance relation, among others characteristics that are mencioned through this study. This study aims to analyze the aluminium alloys behavior on a general context when they are used on turning process, taking for examples the 6262 and 7050 aluminium alloys. In this way, the analysis studies the datas obtained during the turning tests realized on 3 steps each one; those datas are concerning the medium and total rugosities – obtained with the assistance of a portable Surface Roughness Finish Tester, as well as the chips obtained during the tests - visual analysis, and the cutting tools wear – with the assistance of an optical microscope, under different conditions of application of cutting fluids (dry machining, application of coolant in abundance and MQL – Minimum Quantity of Lubricant). The results concerning this study show detailed information about influence of cutting fluids on the machining by turning of the aluminium alloys related on this work and also about aluminium alloys in general when they are used on turning processes with different conditions from one another. By this way, it was evident the MQL technique is the best one for the 6262 alloy. However, for 7050 alloy, it was evident that the dry machining is responsible for the best results

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)