188 resultados para Milk yield persistency
Resumo:
The test-day model is the preferred method for genetic evaluations in dairy cattle. For this study, 28372 test-day records of 1220 lactations from 1997 to 2009 were used. The (co)variance components for milk in test-day were estimated using a Uni and multiple-traits repeated animal model with the Restricted Maximum Likelihood method (REML). The Contemporary Group (herd, year, and season of parity) and the age of parity (linear and quadratic) fixed effects, and the additive genetic, permanent environmental, and residual random effects were included in the model. The heritabilities ranged between 0.06 and 0.45 during lactation. The genetic correlations were greater than 0.93. In conclusion, the test-day model is appropriate for the genetic evaluation of dairy buffaloes in Colombia.
Resumo:
Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and Bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. © 2013 American Dairy Science Association.
Genetic parameters for test-day milk yield, 305-day milk yield, and lactation length in Guzerat cows
Resumo:
Milk production in tropical environments requires the use of crossbreeding systems including breeds well adapted to harsh conditions, but with lower productivities when compared to specialized breeds. Besides the genetic improvement for milk production, lactation lengths also need to be studied for most of these breeds. Accordingly, genetic parameters were estimated for 305-day cumulative milk yield (MY305), test-day milk yield (TDMY), and lactation length (LL) using information from the first lactations of 2816 Guzerat cows selected for milk production in 28 herds in Brazil. Contemporary groups were defined as herd, year and season of the test for TDMY, and as herd, year and season of calving for MY305 and LL. Variance components were estimated with the restricted maximum likelihood method under a multi-trait animal model. Heritabilities estimated for TDMY ranged from 0.16 to 0.24, and were 0.24 and 0.12 for MY305 and LL, respectively. Genetic correlations were high and positive, ranging from 0.51 to 0.99 among TDMY records, from 0.81 to 0.98 between each TDMY and MY305, and from 0.71 to 0.94 between each TDMY and LL. Genetic parameters obtained in this study indicated the possibility of using test-day records for the prediction of breeding values for milk yield in this population of the Guzerat breed. The use of TDMY as selection criteria would result in indirect gains in MY305 and LL. However, the highest response to selection for MY305 would be obtained by direct selection for this trait. © 2012 Elsevier B.V.
Resumo:
Ghrelin is a gastrointestinal hormone that acts in releasing growth hormone and influences the body general metabolism. It has been proposed as a candidate gene for traits such as growth, carcass quality, and milk production of livestock because it influences feed intake. In this context, the aim of this study was to verify the existence of polymorphisms in the ghrelin gene and their associations with milk, fat and protein yield, and percentage in water buffaloes (Bubalus bubalis). A group of 240 animals was studied. Five primer pairs were used and 11 single nucleotide polymorphisms (SNP) were found in the ghrelin gene by sequencing. The animals were genotyped for 8 SNP by PCR-RFLP. The SNP g.960G>A and g.778C>T were associated with fat yield and the SNP g.905T>C was associated with fat yield and percentage and protein percentage. These SNP are located in intronic regions of DNA and may be in noncoding RNA sites or affect transcriptional efciency. The ghrelin gene in buffaloes influences milk fat and protein synthesis. The polymorphisms observed can be used as molecular markers to assist selection. © 2013 American Dairy Science Association.
Resumo:
The major objective of this study was to estimate heritability and genetic correlations between milk yield (MY) and calving interval (CI) and lactation length (LL) in Murrah buffaloes using Bayesian inference. The database used belongs to the genetic improvement program of four buffalo herds from Brazil. To obtain the estimates of variance and covariance, bivariate analyses were performed with the Gibbs sampler, using the program MTGSAM. The heritability coefficient estimates were 0.28, 0.03 and 0.15 for MY, CI and LL, respectively. The genetic correlations between MY and LL was moderate (0.48). However, the genetic correlation between MY and CI showed large HPD regions (highest posterior density interval). Milk yield was the only trait with clear potential for genetic improvement by direct mass selection. The genetic correlation between MY and LL indicates that indirect selection using milk yield is a potentially beneficialstrategy.Theinterpretation of the estimated genetic correlation between MY and CI is difficult and could be spurious. ©2013 Sociedade Brasileira de Zootecnia.
Resumo:
We analyzed 46,161 monthly test-day records of milk production from 7453 first lactations of crossbred dairy Gyr (Bos indicus) x Holstein cows. The following seven models were compared: standard multivariate model (M10), three reduced rank models fitting the first 2, 3, or 4 genetic principal components, and three models considering a 2-, 3-, or 4-factor structure for the genetic covariance matrix. Full rank residual covariance matrices were considered for all models. The model fitting the first two principal components (PC2) was the best according to the model selection criteria. Similar phenotypic, genetic, and residual variances were obtained with models M10 and PC2. The heritability estimates ranged from 0.14 to 0.21 and from 0.13 to 0.21 for models M10 and PC2, respectively. The genetic correlations obtained with model PC2 were slightly higher than those estimated with model M10. PC2 markedly reduced the number of parameters estimated and the time spent to reach convergence. We concluded that two principal components are sufficient to model the structure of genetic covariances between test-day milk yields. © FUNPEC-RP.
Resumo:
The objective of the study was to estimate heritability and repeatability for milk yield (MY) and lactation length (LL) in buffaloes using Bayesian inference. The Brazilian genetic improvement program of buffalo provided the data that included 628 females, from four herds, born between 1980 and 2003. In order to obtain the estimates of variance, univariate analyses were performed with the Gibbs sampler, using the MTGSAM software. The model for MY and LL included direct genetic additive and permanent environment as random effects, and contemporary groups, milking frequency and calving number as fixed effects. The convergence diagnosis was performed with the Geweke method using an algorithm implemented in R software through the package Bayesian Output Analysis. Average for milk yield and lactation length was 1,546.1 +/- 483.8 kg and 252.3 +/- 42.5 days, respectively. The heritability coefficients were 0.31 (mode), 0.35 (mean) and 0.34 (median) for MY and 0.11 (mode), 0.10 (mean) and 0.10 (median) for LL. The repeatability coefficient (mode) were 0.50 and 0.15 for MY and LL, respectively. Milk yield is the only trait with clear potential for genetic improvement by direct genetic selection. The repeatability for MY indicates that selection based on the first lactation could contribute for an improvement in this trait.
Resumo:
The objective of this study was to estimate genetic parameters for milk yield at 244 days and lactation length in graded buffalo cows at the El Cangre Cattle Genetic Enterprise. Data were gathered from 2575 lactations, 1377 buffalo cows, 37 milking units and between 2002-2009 calving years. It was employed the Restricted Maximum Likelihood method (REML) for estimating (co) variance components with multi trait model. Average of milk yield at 244 days and lactation length were 864 kg and 240 days, respectively. Heritability was 0.15 for milk yield and 0.13 for lactation length. Genetic correlation between these traits was 0.63. It was concluded that it is necessary to intensify selection and to increase control of the information of the genetic herds to obtain high precision in the estimates and therefore, obtain bigger genetic progress in of this species in our country.
Resumo:
The aim of this study was to estimate genetic parameters for milk yield (MY) in buffaloes using reaction norms. Model included the additive direct effect as random and contemporary group (herd and year of birth) were included as fixed effects and cow age classes (linear) as covariables. The animal additive direct random effect was modeled through linear Legendre polynomials on environment gradient (EG) standardized means. Mean trends were taken into account by a linear regression on Legendre polynomials of environmental group means. Residual variance was modeled trough 6 heterogeneity classes (EG). These classes of residual variance was formed : EG1: mean = 866,93 kg (621,68 kg-1011,76 kg); EG2: mean = 1193,00 kg (1011,76 kg-1251,49 kg); EG3: mean = 1309,37 kg (1251,49 kg -1393,20 kg); EG4: mean = 1497,59 kg (1393,20 kg-1593,53 kg); EG5: mean = 1664,78 kg (1593,53 kg -1727,32kg) e EG6: mean = 1973,85 kg (1727,32 kg -2422,19 kg).(Co) variance functions were estimated by restricted maximum likelihood (REML) using the GIBBS3F90 package. The heritability estimates for MY raised as the environmental gradient increased, varying from 0.20 to 0.40. However, in intermediate to favorable environments, the heritability estimates obtained with Considerable genotype-environment interaction was found for MY using reaction norms. For genetic evaluation of MY is necessary to consider heterogeneity of variances to model the residual variance.
Resumo:
The objective of this study was to estimate variance components and genetic parameters for accumulated 305-day milk yield (MY305) over multiple ages, from 24 to 120 months of age, applying random regression (RRM), repeatability (REP) and multi-trait (MT) models. A total of 4472 lactation records from 1882 buffaloes of the Murrah breed were utilized. The contemporary group (herd-year-calving season) and number of milkings (two levels) were considered as fixed effects in all models. For REP and RRM, additive genetic, permanent environmental and residual effects were included as random effects. MT considered the same random effects as did REP and RRM with the exception of permanent environmental effect. Residual variances were modeled by a step function with 1, 4, and 6 classes. The heritabilities estimated with RRM increased with age, ranging from 0.19 to 0.34, and were slightly higher than that obtained with the REP model. For the MT model, heritability estimates ranged from 0.20 (37 months of age) to 0.32 (94 months of age). The genetic correlation estimates for MY305 obtained by RRM (L23.res4) and MT models were very similar, and varied from 0.77 to 0.99 and from 0.77 to 0.99, respectively. The rank correlation between breeding values for MY305 at different ages predicted by REP, MT, and RRM were high. It seems that a linear and quadratic Legendre polynomial to model the additive genetic and animal permanent environmental effects, respectively, may be sufficient to explain more parsimoniously the changes in MY305 genetic variation with age.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of markers distributed all long the genome may increase the accuracy of the predicted additive genetic value of young animals that are candidates to be selected as reproducers. In commercial herds, due to the cost of genotyping, only some animals are genotyped and procedures, divided in two or three steps, are done in order to include these genomic data in genetic evaluation. However, genomic evaluation may be calculated using one unified step that combines phenotypic data, pedigree and genomics. The aim of the study was to compare a multiple-trait model using only pedigree information with another using pedigree and genomic data. In this study, 9,318 lactations from 3061 buffaloes were used, 384 buffaloes were genotyped using a Illumina bovine chip (Illumina Infinium (R) bovineHD BeadChip). Seven traits were analyzed milk yield (MY), fat yield (FY), protein yield (PY), lactose yield (LY), fat percentage (F%), protein percentage (P%) and somatic cell score (SCSt). Two analyses were done: one using phenotypic and pedigree information (matrix A) and in the other using a matrix based in pedigree and genomic information (one step, matrix H). The (co) variance components were estimated using multiple-trait analysis by Bayesian inference method, applying an animal model, through Gibbs sampling. The model included the fixed effects of contemporary groups (herd-year-calving season), number of milking (2 levels), and age of buffalo at calving as (co) variable (quadratic and linear effect). The additive genetic, permanent environmental, and residual effects were included as random effects in the model. The heritability estimates using matrix A were 0.25, 0.22, 0.26, 0.17, 0.37, 0.42 and 0.26 and using matrix H were 0.25, 0.24, 0.26, 0.18, 0.38, 0.46 and 0.26 for MY, FY, PY, LY, % F, % P and SCCt, respectively. The estimates of the additive genetic effect for the traits were similar in both analyses, but the accuracy were bigger using matrix H (superior to 15% for traits studied). The heritability estimates were moderated indicating genetic gain under selection. The use of genomic information in the analyses increases the accuracy. It permits a better estimation of the additive genetic value of the animals.
Resumo:
Given the importance of Guzera breeding programs for milk production in the tropics, the objective of this study was to compare alternative random regression models for estimation of genetic parameters and prediction of breeding values. Test-day milk yields records (TDR) were collected monthly, in a maximum of 10 measurements. The database included 20,524 records of first lactation from 2816 Guzera cows. TDR data were analyzed by random regression models (RRM) considering additive genetic, permanent environmental and residual effects as random and the effects of contemporary group (CG), calving age as a covariate (linear and quadratic effects) and mean lactation curve as fixed. The genetic additive and permanent environmental effects were modeled by RRM using Wilmink, All and Schaeffer and cubic B-spline functions as well as Legendre polynomials. Residual variances were considered as heterogeneous classes, grouped differently according to the model used. Multi-trait analysis using finite-dimensional models (FDM) for testday milk records (TDR) and a single-trait model for 305-days milk yields (default) using the restricted maximum likelihood method were also carried out as further comparisons. Through the statistical criteria adopted, the best RRM was the one that used the cubic B-spline function with five random regression coefficients for the genetic additive and permanent environmental effects. However, the models using the Ali and Schaeffer function or Legendre polynomials with second and fifth order for, respectively, the additive genetic and permanent environmental effects can be adopted, as little variation was observed in the genetic parameter estimates compared to those estimated by models using the B-spline function. Therefore, due to the lower complexity in the (co)variance estimations, the model using Legendre polynomials represented the best option for the genetic evaluation of the Guzera lactation records. An increase of 3.6% in the accuracy of the estimated breeding values was verified when using RRM. The ranks of animals were very close whatever the RRM for the data set used to predict breeding values. Considering P305, results indicated only small to medium difference in the animals' ranking based on breeding values predicted by the conventional model or by RRM. Therefore, the sum of all the RRM-predicted breeding values along the lactation period (RRM305) can be used as a selection criterion for 305-day milk production. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to estimate milk production and food consumption during the occurrence of heat waves in the Triangulo Mineiro and Alto Paranaiba, MG by means of bioclimatic zoning based on the Temperature and Humidity Index (THI). Therefore a history of heat wave occurrence between the years 2000-2010 was compiled. The decline in milk production (DMP) and reduced food consumption (RFC) were simulated in cities where periods of heat waves were identified. Frutal and Ituiutaba had the highest rate of heat wave occurrence per year. The DMP and RFC showed bioclimatic differences between the cities of Uberaba, Ituiutaba and Frutal. The cities with the best bioclimatic conditions were Sacramento and Patrocinio, as they presented a THI classified outside of the emergency range, with a night THI of below 76 and without heat waves. Therefore, the occurrence of heat waves can impair food intake and decrease milk production, thereby most effectively demonstrating the effects of thermal stress on dairy cows in the Triangulo Mineiro and Alto Paranaiba, MG region.