167 resultados para Microalgae. Biofuel. Photobioreactor. Transesterification
Resumo:
The X-ray crystal structure of a complex between ribonuclease T-1 and guanylyl(3'-6')-6'-deoxyhomouridine (GpcU) has been determined at 2.0 Angstrom resolution. This Ligand is an isosteric analogue of the minimal RNA substrate, guanylyl(3'-5')uridine (GpU), where a methylene is substituted for the uridine 5'-oxygen atom. Two protein molecules are part of the asymmetric unit and both have a GpcU bound at the active site in the same manner. The protein-protein interface reveals an extended aromatic stack involving both guanines and three enzyme phenolic groups. A third GpcU has its guanine moiety stacked on His92 at the active site on enzyme molecule A and interacts with GpcU on molecule B in a neighboring unit via hydrogen bonding between uridine ribose 2'- and 3'-OH groups. None of the uridine moieties of the three GpcU molecules in the asymmetric unit interacts directly with the protein. GpcU-active-site interactions involve extensive hydrogen bonding of the guanine moiety at the primary recognition site and of the guanosine 2'-hydroxyl group with His40 and Glu58. on the other hand, the phosphonate group is weakly bound only by a single hydrogen bond with Tyr38, unlike ligand phosphate groups of other substrate analogues and 3'-GMP, which hydrogen-bonded with three additional active-site residues. Hydrogen bonding of the guanylyl 2'-OH group and the phosphonate moiety is essentially the same as that recently observed for a novel structure of a RNase T-1-3'-GMP complex obtained immediately after in situ hydrolysis of exo-(S-p)-guanosine 2',3'-cyclophosphorothioate [Zegers et al. (1998) Nature Struct. Biol. 5, 280-283]. It is likely that GpcU at the active site represents a nonproductive binding mode for GpU [:Steyaert, J., and Engleborghs (1995) fur. J. Biochem. 233, 140-144]. The results suggest that the active site of ribonuclease T-1 is adapted for optimal tight binding of both the guanylyl 2'-OH and phosphate groups (of GpU) only in the transition state for catalytic transesterification, which is stabilized by adjacent binding of the leaving nucleoside (U) group.
Resumo:
Poly(3-hydroxybutyrate), PHB, has been structurally modified with maleic anhydride, MA, in the presence of triethylamine, TEA. Glass transition, melting, and crystallization temperature, obtained from DSC curves, and thermal degradation temperatures obtained from TG ones, were employed to evaluate the influence of the MA proportion on the modification in the PHB chain. According to the results, most of chain modification reactions are the 80/20 and 90/10 proportions. Observations suggest that most chain modification reactions occur when the ratio of PHB/MA is 80/20 or 90/10. This suggests that modifications of PHB in the presence of MA involve main chain scission.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O pinhão-manso é uma espécie arbustiva que está se destacando pelo interesse para produção de biocombustível, porém, os estudos sobre controle de qualidade das sementes estão se iniciando. Neste trabalho objetivou-se estudar o efeito da temperatura e do tempo de contagem na germinação de sementes de pinhão-manso, conduzido em papel toalha bem como avaliar a qualidade sanitária das sementes, desinfestadas ou não com hipoclorito de sódio, a 2%. O estudo foi conduzido, com sementes de pinhão-manso extraídas de frutos maduros, coletados na planta. O teste de germinação foi conduzido nas temperaturas de 25 ºC e alternadas de 20-30 ºC, com contagens aos 6, 9 e 12 dias. O teste de sanidade foi conduzido a 20 ºC com fotoperíodo de 12 h por 7 dias. Foi utilizado o delineamento experimental inteiramente casualizado com quatro repetições e empregado o teste F na análise de variância dos dados de germinação e do índice de velocidade de germinação. As médias foram comparadas pelo teste de Tukey a 5% de probabilidade. O potencial máximo de germinação das sementes de pinhão-manso foi obtido na temperatura de 25 ºC, com contagens aos seis, nove e 12 dias, entretanto não apresentou diferença significativa com as temperaturas de 20-30 ºC, nas contagens aos 9 e 12 dias. As sementes de pinhão-manso analisadas apresentaram alta frequência de espécies fúngicas, independente da desinfestação superficial. A incidência de fungos em ordem decrescente foi dos gêneros: Alternaria, Macrophomina, Cladosporium, Colletotrichum, Fusarium, Pestalotiopsis, Phoma, Helminthosporium, Epicocum e Nigrospora a maioria destes fungos apresenta potencial patogênico.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Considerando que o Brasil detém uma vasta gama de matérias-primas para produção de biodiesel, e também que há a possibilidade de produção em pequena escala, prima-se por estudos de cunho econômico a partir de metodologias de fácil execução. O objetivo do trabalho foi demonstrar uma metodologia e sua aplicação para avaliação dos custos inseridos dentro do processo produtivo e de utilização do biodiesel. A metodologia foi aplicada a biodieseis originários de óleo de soja, girassol, frango e sebo bovino, dos quais se avaliaram economicamente os custos fixos e variáveis para conversão química dos óleos e gorduras em ésteres metílicos, em uma planta de produção experimental. Os custos de produção para cada uma das quatro citadas são distintos em função do valor inicial por litro de cada uma. Também fora avaliado o custo específico e o consumo específico de cada um dos biodieseis, a fim de determinar a diferença em relação ao óleo diesel comercial. No estudo de caso, os resultados mostraram vantagens para o óleo diesel, tanto no custo quanto no consumo. Comparando-se os biodieseis, o de sebo bovino apresentou-se com o menor custo de produção e o menor consumo.
Resumo:
O Brasil, terceiro maior produtor de biodiesel do mundo e terceiro maior produtor mundial de frango, pode incrementar, na sua matriz energética, o uso de óleo oriundo de aves como alternativa aos combustíveis fósseis e à redução da dependência do óleo de soja para esse fim. O país dispõe de mais de 350 milhões de litros de óleo de frango por ano. Considerando a aplicação dos combustíveis alternativos para os motores a diesel, em máquinas agrícolas, o trabalho teve por objetivo avaliar o desempenho do motor de um trator agrícola de 53kW acoplado pela TDP em bancada dinamométrica, operando com biodiesel metílico de óleo de frango e misturas com óleo diesel, sendo: B5 (testemunha), B20, B40, B60, B80 e B100. Avaliaram-se a potência, o torque, a reserva de torque, o consumo de combustível, o consumo de energia e a eficiência térmica do motor. O ensaio foi instalado com delineamento inteiramente casualizado (DIC) em esquema fatorial com seis tratamentos. Os resultados foram submetidos à análise de variância e as médias ajustadas por equações de regressão. Foram observadas perdas na geração de potência e torque, aumento no consumo de combustível, redução do consumo energético e melhoria na eficiência térmica do motor, de acordo com o aumento da proporção de biodiesel na mistura.
Resumo:
Poly(3-hydroxybutyrate), PHB has been structurally modified through reaction with maleic anhydride, MA. Transesterification reaction was carried out fixing the PHB and MA and besides time and temperature the concentration of the triethylamine (used as catalyst) was changed. Glass transition, melting and crystallization temperature obtained from DSC curves and thermal degradation temperatures obtained from TG traces were used to evaluate the influence of the reaction conditions on the modification of PHB according to factorial design. on the base of the results the optimum conditions are to perform the PHB modification reaction with MA reaction at 110 degrees C for 1 h with 5% v/v triethylamine.
Resumo:
Biosorption of neodymium in batch experiments took similar to 2 h to achieve the equilibrium biosorbent-metal for all microorganisms tested. The best biosorption coefficient at a constant pH value of 1.5 was obtained using the microalgae Monoraphidium sp. (1521 mg g(-1) cell), followed by Bakers' yeast (313 mg g(-1) cell), Penicillium sp. (178 mg g(-1) cell), and activated carbon (61 mg g(-1) cell). When compared to the biosorption of other metals, these results pointed out to the application of biosorption in neodymium recovery from acidic solutions. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
1-Benzoyl-3-benzylguanidine and 1-benzoyl-3-benzyl-O-ethylisourea were synthesized in good yields (68 and 76%, respectively) from 1-benzoyl-3-benzylthiourea and benzoyl-ethylthiocarbamate in dry media conditions using KF-Al2O3 under microwave irradiation. Strong nucleophilic amines promoted the sulfur elimination by attack on the thiocarbonyl group in both thiourea and thiocarbamates to afford guanidines and isourea, respectively. Transesterification products were obtained from p-TsOH catalyzed reaction of thiocarbamate with alcohols under MW-solvent-free conditions. Very important non-purely thermal MW specific effects were evidenced and attributed to stabilization by coulombic interactions between materials and waves. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Biomass has gained prominence in the last few years as one of the most important renewable energy sources. In Brazil, a sugarcane ethanol program called ProAlcohol was designed to supply the liquid gasoline substitution and has been running for the last 30 yr. The federal government's establishment of ProAlcohol in 1975 created the grounds for the development of a sugarcane industry that currently is one of the most efficient systems for the conversion of photosynthate into different forms of energy. Improvement of industrial processes along with strong sugarcane breeding programs brought technologies that currently support a cropland of 7 million hectares of sugarcane with an average yield of 75 tons/ha. From the beginning of ProAlcohol to the present time, ethanol yield has grown from 2,500 to around 7,000 l/ha. New technologies for energy production from crushed sugarcane stalk are currently supplying 15% of the electricity needs of the country. Projections show that sugarcane could supply over 30% of Brazil's energy needs by 2020. In this review, we briefly describe some historic facts of the ethanol industry, the role of sugarcane breeding, and the prospects of sugarcane biotechnology.
Resumo:
Lipases are versatile enzymes regarding the range of reactions they catalyse and substrates on which they act. They are as well important as catalyst in organic synthesis. Their immobilization on appropriate supports confer them greater stability besides the possibility of operating in continuous reactors. In order to explore these abilities, the reactions involving hydrolysis of p-nitrophenyl acetate (PNPA) and transesterification of PNPA with n-butanol were chosen. Lipases from two different sources were assayed, namely: microbial (Candida rugosa, CRL, Sigma Type VII) and pancreatic (PPL, Sigma, Type 11). Two immobilization methods were also used, namely: 1) adsorption, using as support the following silica derivatives (150-300μm e 450μ): phenyl, epoxy, amino and without derivation, and 2) covalent binding, using glutaraldehyde as binding agent and silica amino as support. This later method led to better results. Hydrolytic activity was 6.1 U/gsupport for CRL and 0.97U/gsupport for PPL, and of transesterification, 2,8U/gsupport for CRL and 1,9U/gsupport for PPL. Stability of the immobilized enzyme as a function of temperature was evaluated for CRL at 40°C and 50°C and for PPL at 32°C and 40°C. The assays were initially carried out batchwise, both for soluble and immobilized enzymes, aiming to the obtention of parameters for the continues reactor. Lipases immobilized by covalent binding were used in the assays of operacional stability in continuos reactors. For PPL in aqueous medium, at 32°C, and CRL in organic medium at 40°C, both operating continuously, no significant loss of activity was detected along the analysis period of 17 days. In the case of CRL in aqueous medium at 40°C there was a loss of activity around 40% after 18 days. For PPL in organic medium at 40°C the loss was 33% after 20 days. Compairing both sources with each other, very different results were obtained. Higher activitiy was found for CRL, both for hydrolysis and for transesterification reactions, with higher stability in organic medium. PPL showed lower activity as well as higher stability in aqueous medium. The immobilization method by covalent binding showed to be the most appropriate. Immobilized lipases are therefore relatively stable both in aqueous and organic medium.
Resumo:
Brazil, which has always been in the forefront of sugarcane production, also occupies a prominent position as the first country to produce and use biofuel in its automobile fleet. This fact is a consequence of the introduction of a program which has already turned 30 years, the Próalcool (National Alcohol Program). The oil crisis in the seventies encouraged the government to develop an alternative way to replace gasoline. Bioethanol was then born as fuel obtained from fermentation of sugarcane juice, molasses or both. In the eighties, 85% of the cars ran exclusively on alcohol. Ethanol production in that decade exceeded sugarcane production by the mills. The installed units reached in that period the capacity to produce 18 billion liters of bioethanol per season, a volume equivalent to 100 million barrels of gasoline. The fermentation process, which so far had been restricted to manufacturing sugarcane liquor (aguardente) or ethanol as a byproduct of sugarcane, takes over the spotlight in the entrepreneurial scene. As a result, processes comprising engineering concepts came up and most of the biological phenomena involved in fermentation were understood. The knowledge gathered and the units installed have granted Brazil the hold of production technology and use of a clean fuel.
Resumo:
The biodegradability of pure diesel and biodiesel and blends with different proportions of biodiesel (2% (commercial); 5% and 20%) was evaluated employing the respirometric method and the redox indicator 2,6-dichlorophenol indophenol (DCPIP) test. In the former, experiments simulating the contamination of natural environments (soil from a petrol station or water from a river) were carried out in Bartha biometer flasks (250 ml), and used to measure the microbial CO 2 production. With the DCPIP test, the capability of three inocula to biodegrade the blends was tested. Results show that although biodiesel is more easily and faster biodegraded than diesel oil, among the blends evaluated (2%, 5% and 20%), only the blend with higher concentration of biodiesel presented biodegradability significantly different from diesel and it was not verified an improvement on the biodegradation of the diesel by means of co-metabolism. © 2008 Academic Journals.