64 resultados para Metal TCNQ complexes
Resumo:
Reaction of LaX3(THF)(n) (X = Cl, 1) with two equiv. of K(Tp(Me2)) gave good yields of the bis-Tp complexes [La(Tp(Me2))(2)X] (X = Cl (1); I (3)). However, the formation of 1 and 3 is always accompanied by significant amounts of La(Tp(Me2))(2)(kappa(2)-pz(Me2)) ([pz(Me2)](-) = 3,5-dimethyl-pyrazolato) (2). The pyrazolato complex 2, which presumably arises from decomposition of the [Tp(Me2)](-) moiety during salt metathesis, was independently prepared in good yield from 1 and in situ generated [pz(Me2)](-). The solid-state structures of 1 and 2 were determined by single-crystal X-ray diffraction studies. Subsequent reactions of halogeno-Tp(Me2) complexes 1 and 3 with various alkali metal salts MR (M = Li, R = CH2SiMe3, Ph, N(SiMe3)(2); M = K, R = OAr) gave M(Tp(Me2)) as the major product. Alternatively, the mono-Tp bis(aryloxide) derivatives [Ln(Tp(Me2))(OC6H2-2,6-'Bu-4-Me)(2)] (Ln = La (4); Nd (5)) were obtained in high yields by salt metathesis of [Ln(OC6H2-2,6-'Bu-4-Me)(3)] with one equiv. of K(Tp(Me2)). (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The triply chloro-bridged binuclear complexes [Ph3X=O...H...O=XPh3][Ru2Cl7(XPh3)(2)].0.5(CH2Cl2) (H2O) (X = As or P) were obtained from [RuCl3(XPh3)(2)DMA].DMA (DMA = dimethylacetamide) CH2Cl2/Et2O solution. The structures were characterized by X-ray diffraction studies. The complexes are formed from two Ru atoms bridged by three chloride anions. The two ruthenium atoms are also coordinated to two non-bridging Cl atoms and an AsPh3 or PPh3 ligand respectively. As an interesting feature, the cations of these complexes are protons, trapped in a very short hydrogen bond between two triphenylarsine or triphenylphosphine oxide molecules.
Resumo:
M(CO)(4)(N-N)] reacts with CuCl to give new heterobimetallic metal carbonyls of the type [M(CO)(4)(N-N)(CuCl)], M = W, Mo; N-N = 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen). Reactions of [M(CO)(4)(N-N)(CuCl)] with NaSCN produced the series of complexes of general formula [M(CO)(4)(N-N)(CuSCN)]. The i.r. spectral of all the bimetallic carbonyls exhibited the general four m ( CO) band patterns of the precursors. The u.v.-vis. spectral data for precursors and products showed bands associated with pi --> pi* (nitrogen ligands), d-->d (intrametal), as well as MLCT d-->pi* (nitrogen ligands) and MLCT d --> pi*(CO) transitions. The [M(CO)(4)(N-N)(CuX)] (X = Cl, SCN) emission spectra showed only one band associated with the MLCT transition. The t.g. curves revealed a stepwise loss of CO groups. The initial decomposition temperatures of the [M(CO)(4)(N-N)(CuX)] series suggest that the bimetallic compounds are indeed thermally less stable than their precursors, and the X- ray data showed the formation of MO3, CuMO4, Cu2O and CuO as final decomposition products, M = W, Mo. The spectroscopic data suggests that the heterobimetallic compounds are polymeric.
Resumo:
The compounds [Cu(N-3)(NSC)(tmen)](n) (1), [Cu(N-3)(NCO)(tmen)](n) (2) and [Cu(N-3)(NCO)(tmen)](2) (3) (tmen = N,N,N',N'-tetramethylethylenediamine) were synthesized and studied by i.r. spectroscopy. Single crystals of compounds (1) and (3) were obtained and characterized by X-ray diffraction. The structure of compound (1) consists of neutral chains of copper(II) ions bridged by a single azido ligand showing the asymmetric end-to-end coordination fashion. Each copper ion is also surrounded by the other three nitrogen atoms: two from one N,N,N',N'-tetramethylethylenediamine and one from a terminal bonded thiocyanate group. Compound (2) decomposes slowly in acetone and the product formed [Cu(N-3)(NCO)(tmen)](2) (3) crystallizes in the monoclinic system (P2(1)). The structure of (3) consists of dimeric units in which the Cu atoms are penta-coordinated and connected by p(1,3) bridging azido and cyanate ligands. In both cases the five coordinated atoms give rise to a slightly distorted square-based pyramid coordination geometry at each copper ion. The thermal behavior of [Cu(N-3)(NSC)(tmen)](n) (1) and [Cu(N-3)(NCO)(tmen)](n) (2) were investigated and the final decomposition products were identified by X-ray powder diagrams.
Resumo:
The complexes (NH4)(2)[ MoO2( C2H2O3)(2)]center dot H2O, (NH4)(2)[MoO2(C8H6O3)(2)] and (NH4)(2) [MoO3(C4H4O6)]center dot H2O were prepared by reaction of MoO3 with glycolic, mandelic and tartaric acids, respectively. The complexes were characterized by elemental and thermal analysis, IR spectroscopy and X- ray diffraction. Crystals of the glycolate and tartarate complexes are orthorhombic and the mandelate complex is monoclinic. Elemental and thermal analysis data showed that the glycolate and tartarate complexes are monohydrated. Hydration water is not present in the structure of the mandelate complex. IR spectra showed COO- is involved in coordination as well as the oxygen atom of the deprotonated hydroxyl group of the alpha-carbon. The glycolate molybdenum complexes with general formula M-2[MoO2(C2H2O3)(2)]center dot nH(2)O, where M is an alkali metal and n=1 or 1/2, were also prepared and characterized. Aqueous solutions of the glycolate complex become blue and mandelate and tartarate complexes change to yellow or brown when exposed to UV- radiation.
Resumo:
Solid state M-4-Me-BP compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu, Zn, Pb and 4-Me-BP is 4-methylbenzylidenepyruvate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterise and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated complexes. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Ethylene was polymerized using a combination of Ni(diimine)Cl-2 (1) (diimine = 1,4-bis(2,6-di-isopropylphenyl)-acenaphthenediimine) and {Tp(Ms)*} TiCl3 (2) (Tp(Ms)* = hydridobis(3-mesitylpyrazol-1-yl)(5-mesityl-pyrazol-1-yl)) compounds in the presence of methyl-aluminoxane (MAO) at 30 degrees C. The productivity reaches a maximum at X-Ni = 0.75 (1400 kg of PE/mol[M] . h), and the produced polyethylene (PE) showed maximal melt flow index (0.13 g/10 min) and minimal intrinsic viscosity (2.24 dL/g) compared to polyethylenes obtained with different values of nickel loading fractions (X-Ni). Productivity intrinsic viscosity data, as well as melt flow index measurements markedly depend upon the content of the late transition metal, thus suggesting a synergic effect between nickel and titanium catalysts.
Resumo:
Metal complexes of calcium with 5,7-dibromo, 7-iodo and 5-chloro-7-iodo-8-hydroxyquinolate were precipitated in aqueous ammonia and acetone medium, except for the solid state compound with 5,7-dichloro-8-hydroxyquinoline which hasn't been obtained under these conditions. The complexes obtained through the mentioned precipitation are Ca[(C9H4ONBr2)(2)](3).H2O, Ca[(C9H5ONI)(2)].2H(2)O and Ca[(C9H4ONICl)(2)].2.5H(2)O. Their intermediate from the thermal decomposition found through TG/DTA curves in air indicated the presence of different kinds of calcium carbonates related to the reversibility and crystalline structure, depending on the original compounds. The initial compounds and the intermediate from the thermal decomposition were also characterized through IR spectra and X-ray diffraction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The compounds of the type LZnFe(CO)4 (L = dien, trien, tn, s-diMeen, Meen) not yet reported and (NH3)3ZnFe(CO)4, already known, were prepared and studied by IR and Raman spectroscopy. The data obtained suggest that LZnFe(CO)4, for L = (NH3)3, dien and trien are monomers with a bipyramidal trigonal configuration around the iron atom, while for L = tn, s-diMeen and Meen the complexes are probably polymers having a center of symmetry with iron atoms octahedrally co-ordinated. © 1979.
Resumo:
The [Ru(NH3)5(H2O)]2+ and trans-[Ru(NH3)4SO2(H2O)]2+ complexes ions were immobilized on poly(4-vinylpyridine) (4-PVP) through reactions in aqueous solutions. The stability of the imobilized complexes was checked in aqueous solution in the pH 2.0-8.0 range. The number of pyridinic nitrogens in the polymer 4-PVP is 2.80±0.05 mmol/g according to nitrogen elemental analysis. Potentiometric titration experiments showed that the accessible nitrogen, in aqueous medium, was 0.94±0.02 mmol/g with a p Ka value of 7.4±0.2. In addition, ruthenium and sulfate analysis has demonstrated that about 15% of the accessible nitrogen sites are able to coordinate to the metal centers. The characterization of the immobilized complexes was made through diffuse electronic and infrared spectroscopies and differential pulse and cyclic voltammetries. © 1993 Plenum Publishing Corporation.
Resumo:
Fourteen complexes in the series [RuCl2(CO)(L)(PPh3)2] (where L = N-heterocycles) have been prepared and characterized by IR and NMR spectroscopies, and cyclic voltammetry. A good correlation is found between observed and calculated electrochemical potentials; E1/2 vs pKa or (Gp, σm for a series of similar ligands. It is now reported that the carbonyl stretching frequency, νCO, and the 13C and 31P NMR signals do not correlate well with any of the physico-chemical parameters used (E1/2, Taft's and Hammett's parameters). This behaviour is probably due to the characteristics of the Ru(II) species, which does not transmit the steric and electron donor/acceptor properties of the ligands to the carbonyl group, or because the measurements are not able to detect the effect induced by the changes in the ligand L. Indeed, good correlations are obtained when the measurements directly involve the metal centre, as is the case in the E1/2 measurements. Crystals of o[RuCl2(CO)(4-pic)(PPh3)2] are monoclinic, space group P21/n, a = 12.019(2), b = 13.825(3) and c = 22.253(3) . The structure was solved by the Patterson method and was refined by full-matrix least-squares procedure to R = 0.054 and Rw = 0.055, for 2114 reflections with I > 3σ(I). For L = 2-acetylpyridine and 2-methylimidazole, complexes with formulae [RuCl2(CO)(L)(PPh3)] · L and [RuCl2(CO)(L)2 (PPh3)], respectively, were obtained. © 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The isotherms of adsorption of CuX2 (X=Cl-, Br-, ClO- 4) by silica gel chemically modified with 2-aminothiazole were studied in acetone and EtOH solutions, at 25°C. The 2-aminothiazole molecule, covalently bond to the silica gel surface, adsorbs CuX2 from solvent by forming a surface complex. At low loading, the electronic and E.S.R. spectral parameters indicate that the Cu2+ complexes have a distorted tetragonal symmetry. The d-d eletronic transition spectra show that for ClO- 4 complex, the peak of absorption do not change for any degree of metal loading whilst for Cl- and Br- complexes, the peak maxima shift to higher energy with lower metal loading. © Elsevier Science Ltd.
Resumo:
Ten copper(II) complexes of tetradentate Schiff bases obtained by condensing two moles of an o-hydroxyphenylcarbonyl compound with a diamine have been prepared and characterized by elemental analyses, melting points, IR and electronic spectra. The IR and electronic spectra of the free ligand and the complexes are compared and discussed. The deconvolution of the visible spectra of the complexes in CHCl3, approximately C2v or C1, yielded four peaks at ca. 15000, 17000, 18000-19000, and 20000-22000 cm-1, assigned to the four d-d transitions.