81 resultados para Mercury (Roman deity)
Resumo:
Cathodic stripping voltammetry (CSV) and accumulation at the hanging mercury drop electrode are reviewed briefly. Proposals in a recent IUPAC technical report are considered. Three recent developments in CSV are discussed: the adaptation of CSV methods developed for use with the hanging mercury drop electrode for use with screen-printed carbon electrodes in disposable sensors, the use of reactive accumulation, and the chemometric use of kinetic methods of determination with pulse methods in CSV.
Resumo:
This work describes an efficient, fast, and reliable analytical methodology for mercury determination in urine samples using stripping chronopotentiometry at gold film electrodes. The samples were sonicated in the presence of concentrated HCl and H2O2 for 15 min in order to disrupt the organic ligands and release the mercury. Thirty samples can be treated over the optimized region of the ultrasonic bath. This sample preparation was enough to allow the accurate stripping chronopotentiometric determination of mercury in the treated samples. No background currents and no passivation of the gold film electrode due to the sample matrix were verified. The samples were also analyzed by cold vapour atomic absorption spectrometry (CV-AAS) and good agreement between the results was verified. The analysis of NIST SRM 2670 (Toxic Metals in Freeze-Dried Urine) also validated the proposed electroanalytical method. Finally, this method was applied for mercury evaluation in urine of workers exposed to hospital waste incinerators. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Thermogravimetry, Differential Scanning Calorimetry and other analytical techniques (Energy Dispersive X-ray Analysis; Scanning Electron Microscopy; Mapping Surface; X-ray Diffraction; Inductively Coupled Plasma Atomic Emission Spectroscopy and Cold Vapor Generation Atomic Absorption Spectroscopy) have been used to study the reaction of mercury with platinum foils. The results suggest that, when heated, the electrodeposited Hg film reacts with Pt to form intermetallic compounds each having a different stability, indicated by at least three mass loss steps. Intermetallic compounds such as PtHg4, PtHg and PtHg2 were characterized by XRD. These intermetallic compounds were the main products formed on the surface of the samples after partial removal of bulk mercury via thermal desorption. The Pt(Hg) solid solution formation caused great surface instability, attributed to the atomic size factor between Hg and Pt, facilitating the acid solution's attack to the surface.
Resumo:
A flow-injection system for multielemental analysis with a mercury(II) preconcentration step using a resin Chelite-S(R)(Serva Feinbiochemica Heidelberg, Part No. 41709) packed minicolumn by inductively coupled plasma atomic emission spectroscopy is described. A mercury reductive elution procedure with a mixture of SnCl2/HCl was used, which allows use of 6 mol/L HCl solution instead of concentrated hydrochoric acid. The main parameters related to ICP operation, such as radio frequency power (950-1750 W), auxiliary argon flow (0.0-1.5 L/min) and spray chamber nebulizer pressure (15-35 psi), were studied. Optimization of the FIA system was reached by defining the best eluent carrier stream (1.4-2.8 mL/min), Hgdegrees carrier stream (10-40 mL min(-1)), loading time (0.5-4.0 min), sample flow rate (1.25-10.0 mL/min), temperature of reactor gas liquid separator (GLS) (25-75 degreesC) and eluent volume (50-350 muL). Throughput is around 30 samples per hour for analytical solutions within the range 50-2500 ng Hg(II)/L. Results from certified material showed good precision (RSD < 3%, n = 12) and no statistical difference was observed for real samples analyzed by AAS and by the proposed system.
Resumo:
Gold has been exploited intensively in the Brazilian Amazon during the past 20 years, and the elemental mercury (Hg) used in amalgamating the gold has caused abnormal Hg concentrations in waterways. Since 1986 particular attention has been given to the Madeira River because it is the largest tributary of the Amazon River and gold mining was officially allowed on a 350-km sector of the river. In this paper, samples of sediments from nine lakes located in the Madeira River basin, Rondonia State, Brazil, were analysed for mercury and organic matter. The average Hg content ranged between 33 and 157 ppb, which is about 8-40 times higher than the average value corresponding to 4.4 ppb for rocks occurring in the area (regional background). Significant correlation was found between the Hg content and organic matter in the sediments, indicating its importance on the retention of this heavy metal.
Resumo:
Mercury thin films prepared by electrochemical deposition on Pt-Ir alloy and after partial removing of mercury at different temperatures were studied by means of an interferometric surface mapping microscope and by X-ray photoelectronic spectroscopy. Mercury film samples having mercury partially removed by anodic stripping at a potential more positive than the corresponding peak in the voltammogram were also studied using the same techniques. For blank samples the surface topographic studies showed well defined grain boundaries. Mercury film samples when heated up to different temperatures showed as material is removed and that the surface roughness decreases as the temperature increases. For samples heated up to 800 degrees C the surface roughness is approximately the same that for the blank. A model for the interphase of volumetric mercury electrodeposited on a Pt-Ir alloy has been proposed using samples both electrochemically and thermally removed of their Hg coatings. The model includes a layered three-region structure, containing at least two Pt-Hg intermetallics: PtHg4 and PtHg2. A substrate modified region, iridium rich, has also been detected. (C) 1999 Elsevier B.V. S.A. All rights reserved.
Resumo:
In this work, a hydrophilic clay, Na-montmorillonite from Wyoming, USA, was rendered organophilic by exchanging the inorganic interlayer cations for hexaclecyltrimethylammonium ions (HDTA), with the formulae of [(CH3)(3)N(C16H33)](+) ion. Based on fact that organo-clay has high affinities for non-ionic organic molecules, 1,3,4-thiadiazole-2,5-dithiol was loaded oil the HDTA-montmorillonite surface, resulting in the 1,3,4-thiadiazole-2,5-dithiol-HDTA-montmorillonite complex (TDD-organo-clay).The following properties of TDD-organo-clay are discussed: selective adsorption of heavy metal ions measured by batch and chromatographic column techniques, and utilization as preconcentration agent in a chemically modified carbon paste electrode (CMCPE) for determination of mercury(II).The main point of this paper is the construction of a selective sensor, a carbon paste electrode modified with TDD-organo-clay, its properties and its application to the determination of mercury(II) ions, as this element belongs to the most toxic metals. The chemical selectivity of this functional group and the selectivity of voltammetry were combined for preconcentration and determination. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this work we applied mercury porosimetry for the investigation of soybean seed coats. By using this method it was possible to determine the pore size distribution and also the pore size dispersion that is present in seed coats. The results showed that for the studied soybean genotype the seed coats had a characteristic pore diameter, but deviation of this size was not negligible. Finally, the results were confirmed by electron microscopy.
Resumo:
A reversible intermittent pow-injection procedure is proposed for the automated determination of mercury in sediments and vinasses by cold vapor atomic absorption spectrometry, CVAAS. Solutions of sample and stannous chloride are carried by two air streams and sequentially injected into the generator/separator chamber in a segmented asynchronous merging zone configuration. The intermittent flow in the forward direction carries the mercury vapor through the flow cell, and in the backward direction, if aspirates the the remaining solution from the vessel to waste. We investigated composition and concentration of reagents, pow rates, commutation times, reactor configuration, and conditions for mercury release. The accuracy was checked by mercury determination in a certified sediment and spiked vinasses and river waters. The system handles about 100 samples per hour (0.50-5.00 mu g L-1), consuming ca. 2.5 mL of sample and 50 mg of SnCl2 per determination; Good recoveries (92-103%) were obtained with spiked samples. Results are precise (RSD <3% for 2.5 mu g Hg L-1, n = 12) and in agreement with values for certified reference material at 95% confidence level. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The electrochemical reduction of two reactive dyes: Procion Red HE-3B 9 (RR120) and Procion Green HE-4BD (RG19) was investigated using cyclic voltammetry, differential pulse and DC, polarography, chronoamperometry and controlled potential electrolysis at mercury electrodes. The bis-azo groups of the RR120 dye are reduced together in one single step of four electrons, the bis-azo groups of the RG19 dye are reduced in two steps owing to the difference in the electron densities promoted by the different substituents in the benzene rings adjacent to the azo groups. The bis-monochlorotriazine reactive groups in both dyes are reduced only in acidic medium in their protonated form, leading to the reduction of the triazine groups. The reduction mechanism of both reactive dyes is discussed. Both dyes can be quantified in aqueous medium by differential pulse polarography in the concentration range of 1 x 10(-7) mol L-1 to 1 x 10(-5) mol L-1 by monitoring the reduction of the chromophore group or the reactive group.
Resumo:
This paper proposes a simple methodology for mercury quantification in natural water by stripping chronopotentiometry at constant current, using gold (film) electrodes constructed from recordable CDs in stationary cell. The proposed method allows the direct measurement of labile mercury in natural waters. To quantify total mercury, a robust and low cost UV irradiation system was developed for the degradation of organic constituents of water. The proposed system presents such advantages as excellent sensitivity, low cost, versatility, and smaller dimensions (portability for on-field applications) when compared with other techniques (ICP, GFAAS, fluorimetry) traditionally utilized for mercury quantification. A large linear region of responses was observed, situated over the range 0.02 - 200 μ g L-1. Various experimental parameters were optimized and the system allowed quantifications in natural samples, with detection limit of 8 ng L-1 and excellent reproducibility (RSD of 1.4% for 48 repetitive measurements using a 10 μ g L-1 mercury solution). Different metal ions were evaluated, including copper, as possible interferences on stripping mercury signals. Applications of the new method were demonstrated for the analysis of certified and groundwater samples spiked with a known amount of mercury and for the quantification of methylmercury in synthetic oceanic water, originally utilized for fishes contamination experiment.
Resumo:
Silica gel with a specific surface area of 365 m(2).g(-1) and an average pore diameter of 60 Angstrom was chemically modified with 2-mercaptoimidazole. The degree of functionalization of the covalently attached molecule, (drop SiO)(3)(CH2)(3) - MI, where MI is the 2-mercaptoimidazole bound to the silica surface by a propyl group, was 0.58 mmolg.(-1). In individual metal adsorption experiments from aqueous solutions by the batch procedure, the affinity order was Hg(II)much greater than Cd-II > Cu-II approximate to Zn-II approximate to Pb-II > Mn-II at solution pHs between 4 and 7. Due to the high affinity by the sulfur atom, Hg-II is strongly bound to the functional groups. When solution containing a mixture of Hg-II, Cd-II, Cu-II, Zn-II, Pb-II, and Mn-II ions was passed through a column packed with the adsorbent, Hg-II was the only one whose adsorption and elution was not affected by the presence of other ions.
Resumo:
Thermogravimetry (TG) energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), mapping surface, X-ray diffraction (XRD), inductively coupled plasma emission spectroscopy and atomic spectroscopy with cold vapor generation have been used to study the reaction of mercury with platinum-rhodium (Pt-Rh) alloy. The results suggest that, the electrodeposited Hg film reacts with Pt-Rh to form intermetallic compounds of different stability, when heated indicated by at least four weight loss steps. Intermetallic compounds as PtHg4 and PtHg2 was characterized by XRD. These intermetallic compound are the main product presents on the surface of the samples after remotion of the bulk mercury via thermal desorption techniques. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The influence of structural features of tropical river humic substances (HS) on their capability to reduce mercury(II) in aqueous solutions was studied. The HS investigated were conventionally isolated from Rio Negro water-Amazonas State/Brazil by means of the collector XAD 8. In addition, the isolated HS were on-line fractionated by tangential-flow multistage ultrafiltration (nominal molecular-weight cut-offs: 100, 50, 30, 10, 5 kDa) and characterized by potentiometry and UV/VIS spectroscopy. The reduction of Hg(II) ions to elemental Hg by size-fractions of Rio Negro HS was assessed by cold-vapor AAS (CVAAS). UV/VIS spectrometry revealed that the fractions of high molecular-size (F-1 > 100 kDa and F-2: 50-100 kDa) have a higher aromaticity compared to the fractions of small molecular-size (F-5: 5-10 kDa, F-6: < 5 kDa). In contrast, the potentiometric study showed different concentration of functional groups in the studied HS fractions. The reduction of Hg(II) by aquatic HS fractions at pH 5 proceeded in two steps (I, II) of slow first order kinetics (t(1/2) of I: 160 min, t(1/2) of II: 300 min) weakly influenced by the molecular-size, in contrast to the differing degree of Hg(II) reduction (F-5 > F-2 > > F-1 > F-3 > F-4 > > F-6). Accordingly, Hg(II) ions were preferably reduced by HS molecules having a relatively high ratio of phenolic/carboxylic groups and a small concentration of sulfur. From these results a complex 'competition' between reduction and complexation of mercury(II) by aquatic HS occurring in tropical rivers such as the Rio Negro can be suggested. (C) 2003 Elsevier B.V. All rights reserved.