146 resultados para Mechanical Resistance
Resumo:
O objetivo deste estudo foi avaliar o efeito de diferentes sistemas de manejo, nos atributos físicos de um Neossolo Quartzarênico e de um Latossolo Vermelho. Foram avaliados a densidade do solo, o volume total de poros e a resistência mecânica à penetração. Todos os sistemas de manejo e uso do solo promoveram aumento na densidade, diminuição do volume total de poros e variação da resistência do solo à penetração. No Neossolo Quartzarênico houve diminuição da macroporosidade.
Resumo:
O presente trabalho foi conduzido na Pista de Ensaios de Semeadura do Laboratório de Máquinas e Mecanização Agrícola (LAMMA) da UNESP/Jaboticabal - SP, para o estudo da ação da roda compactadora de semeadoras sob cargas verticais, na deformação do solo, com dois teores de água. Os tratamentos consistiram da combinação de dois teores de água e seis cargas verticais, totalizando 12 tratamentos, com três repetições, em dois ensaios, analisando-se a resistência mecânica do solo à penetração e a deformação do solo provocada pela roda compactadora. A roda compactadora utilizada era de alumínio, com massa de 6,4 kg, 40 cm de diâmetro e 10 cm de largura, sob a ação de cargas verticais de 63; 161; 259; 357; 455 e 553 N, obtidas acoplando-se lastros de chumbo sobre a roda compactadora, sendo os teores de água do solo de 15,4 e 9,2%. Os resultados permitem concluir que o teor de água do solo tem grande influência na deformação e compactação do solo, que aumentam proporcionalmente com as cargas verticais sobre a roda compactadora, e que, quanto maior o teor de água do solo, mais suscetível o mesmo fica à compactação e deformação.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Glass ionomer cements (GICs) are currently used for various dental applications such as luting cements or as restorative materials. The calcium fluoro-alumino-silicate system is the basis for degradable glasses used to obtain the GICs. The purpose of the present paper is to add niobium to conventional glass system because according to previous papers niobium addition improves the chemical resistance and the mechanical properties of glasses. Therefore, the GICs prepared from these glasses would result in cements with higher chemical and mechanical resistance. The niobium fluoride powders were prepared using the sol-gel process and were characterized by X-ray diffraction, differential thermal analysis (DTA) and Al-27 and Si-29 MAS NMR. The results obtained by XRD showed that the powders prepared by this method are glass-ceramic. In the DTA curve was detected the presence of T-g and T-c temperatures. The analysis of MAS NMR spectra indicated that the framework of the powders is formed by SiO4 and AlO4 linked tetrahedra which are essential structures to yield the cements. Thus, we concluded that niobium fluoride silicate powders can be used in the preparation of GICs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Pyroelectric sensors work as a thermal transducer converting the non-quantified thermal flux into the output measurable quantity of electrical charge, voltage or current. Ferroelectric ceramics and ferroelectric polymers have been extensively used as thermal detectors. More recently the research in the field of pyroelectricity has been concentrated on discovering materials with higher figures of merit (FOM), which means better sensing materials. Composite materials obtained with ferroelectric ceramics embedded in polymer host have received great attention because of their formability, mechanical resistance and the possibility to change their dielectric property varying the volume fraction of ceramic particles. In this work composite films made of modified lead titanate (PZ34) and poly(ether-ether-ketone) (PEEK) were characterized and used as sensing element to measure X-ray intensity in the ortovoltage range (120 - 300 kVp). The sensor response varies from 2.70 V to 0.80 V in the energy fluency range of 6.30 to 37.20 W/m(2). Furthermore the absorbed energy was analyzed as a function of the ionizing energy. The results indicate that the PZ34/PEEK composite with 60/40 vol.% can be useful to monitor X-ray radiation therapy.
Resumo:
The textile industry consumes large quantities of water and chemicals, especially in dyeing and finishing processes. Textile dye adsorption can be accomplished with natural or synthetic compounds. Cell immobilization using biomaterials allows the reduction of toxicity and mechanical resistance and opens spaces within the matrix for cell growth. The use of natural materials, such as sugarcane bagasse, is promising due to the low costs involved. The aim of the present study was to evaluate the use of sugarcane bagasse treated with either polyethyleneimine (PEI), NaOH or distilled water in the cell immobilization of Saccharomyces cerevisiae for textile dye removal. Three different adsorption tests were conducted: treated sugarcane bagasse alone, free yeast cells and bagasse-immobilized yeast cells. Yeast immobilization was 31.34% with PEI-treated bagasse, 8.56% with distilled water and 22.54% with NaOH. PEI-treated bagasse exhibited the best removal rates of the dye at all pH values studied (2.50, 4.50 and 6.50). The best Acid Black 48 adsorption rates were obtained with use of free yeast cells. At pH 2.50, 1 mg of free yeast cells was able to remove 5488.49 g of the dye. The lowest adsorption capacity rates were obtained using treated bagasse alone. However, the use of bagasse-immobilized cells increased adsorption efficiency from 20 to 40%. The use of immobilized cells in textile dye removal is very attractive due to adsorbed dye precipitation, which eliminates the industrial need for centrifugation processes. Dye adsorption using only yeast cells or sugarcane bagasse requires separation methods.
Resumo:
Flexible and free-standing films of piezoelectric composites made up of lead zirconate titanate (PZT) ceramic powder dispersed in a castor oil-based polyurethane (PU) matrix were obtained by spin coating and characterized as materials for sensor applications. The piezoelectric coefficients d 31 and d 33 were measured with the usual technique. The piezoelectric charge constant d 33 yields values up to ≤24 pC/N, even at lower PZT content (33 vol%). Some desirable properties like piezoelectricity, flexibility and good mechanical resistance show this new material to be a good alternative for use as sensors and actuators.
Resumo:
The objective of this study was to investigate the effects of ultrasound treatment and physical exercise on the velocity of bone consolidation and resistance to deformation. We performed osteotomy in the upper third of the right tibia of rats. Physical training consisted of swimming 1 h per day with a load of 5% b.w. for 30 days. Therapy with medium-intensity ultrasound was applied daily on the damaged area. Wistar rats were divided into the following groups: osteotomized sedentary animals with no ultrasound treatment (1.OSnUS), osteotomized trained animals with no ultrasound treatment (2.OTnUS), osteotomized sedentary animals with ultrasound treatment (3.OSwUS). and osteotomized trained animals with ultrasound treatment (4.OTwUS). The animals were sacrificed for the following analyses: muscle glycogen, serum alkaline phosphatase at the 5th, 10th, 20th, and 30th days, test of maximum resistance to flexion, rupture flexion and mean tibial rigidity at the 30th day. Muscle glycogen was increased at the 20th day: alkaline phosphatase was elevated at the 5th and 20th days in groups 3.OSwUS and 4.OTwUS. and decreased at the 10th day. Groups1.OSnUS and 2.OTnUS did not show significant variations. In the mechanical resistance tests, we noted that ultrasound therapy and the association of physical activity used in the present study showed significant differences in bone resistance and bone rigidity after 30 days of treatment. These facts suggest that ultrasound or physical activity, or their combination may accelerate the process of bone tissue repair.
Resumo:
A quite common problem in the recovery of degraded areas in the mineral exploration understands the compaction of the soil due to the intense traffic of machines and earth movement. The most common problem of the compaction of a degraded surface is: increase of the mechanical resistance to the penetration of the rooats, reduction of the aeration, alteration of the water flow and heat. Thus the present work had the basic objective of diagnosing the compaction of a degraded area by mining in a space way, through the mechanical resistance the way penetration to guide a future subsoiling in the place seeking recovery. Through the studies it was concluded that the kriging method in agreement with the space variation allows the division of the area studies in sub areas facilitating a future work to reduce cost and unnecessary interference to the atmosphere. The method was shown quite appropriate and it can be used in diagnosis of the compaction in a degraded area by mining, foreseeing subsoiling need.
Resumo:
The aim of this work was to evaluate the influence of compression force and humidity in the dissolution profile of tablets formulation. As hidroclorotyiazide presents real problems of bioavailability, it was incorporate as standard drug in a formulation of tablets to study the mechanical resistance, time of disintegration and dissolution profile in function of humidity and compression force. The time of disintegration was not affected by the compression force, but it was influenced by humidity. The dissolution profile was altered by the compression force and for the humidity as well. Both factors can alter the bioavailability of drugs dispensed in the form of tablets.
Resumo:
The soil mechanical resistance to penetration (PR) has great influence on vegetative development as the root growth and the crop productivity change in inverse proportion. Thus, the objective of this research was to study correlation between the bean grain productivity and the PR in an Oxisol cultivated for four years in no-tillage system at FEIS/UNESP. The attributes PR and yield were determined in a regular grid with 119 sample points. The PR was determined in the layers of 0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20 and 0.25-0.30 m. The results were submitted to procedures of descriptive statistics, linear correlation and geostatistic analysis. The linear correlation between the yield and PR was practically null, as in all soil layers investigated it showed determination coefficients (R2) smaller than 0.03 and not significant. The geostatistic analysis showed moderate structure of spatial dependency for PR in the layers of 0.05-0.10 and 0.10-0.15 m, and strong for yield; however, the conjugate spatial analysis of such attributes showed no correlation, therefore, the spatial variability of PR did not influence the yield.
Resumo:
Soil management measures that increase the efficiency of organic matter cycling and maintain favorable soil structure are needed for improving soil quality. On the other hand, soil structure degradation due to inadequate soil management systems is widespread. Among the indicators of soil physical quality, saturated hydraulic conductivity and penetration resistance are thought to be sensitive to soil management system. The aim of this work was to study the influence of soil tillage system and organic fertilization on selected soil physical properties after the first year of treatment. The field work was conducted in Selviria, MS, Brazil on an Oxisol. The experimental design was randomized complete blocks with split-plots, with 12 treatments and 4 repetitions. Tillage treatments included conventional ploughing (CT) and direct drilling (DD). Fertilizer treatments were: 1) manure, 2) manure plus mineral, 3) traditional mineral 4) plant residues of Crotalaria juncea, 5) plant residues of Pennisetum americanum and 6) control plot. The plots were cropped to bean in winter and to cotton in summer, and both cultures were irrigated. After one year no significant differences between treatments in mechanical resistance and porosity were found. However, saturated hydraulic conductivity and infiltration were higher in the conventional tillage treatment at the 0.00-0.10 m depth. Moreover, an improvement in soil physical condition by organic fertilizers was shown.
Resumo:
The reuse of materials has as its main objective to minimize environmental impacts and to rationalize the use of energy chains. In the present work, samples of scraps of 316 stainless steel mixed with powder of the same material were sintered. For this case, the percentage of scrap was varied from zero to 25% in weight, with 5% increases. After compacting, under a pressure of 600MPa, the samples were sintered simultaneously at a temperature of 1473 K. The mechanical behavior of the final product was evaluated through Assays of Transversal Rupture recommended and normalized by the MPIF - Metal Powder Industries Federation. Using Conventional Quantitative Metallography, the analyses of the sintered samples demonstrated regions of intense diffusion, therefore, regions of sufficiently intense sintering. The mechanical resistance of the samples was compared with the mechanical resistance of the sintered stainless steel with no scrap. The results were greater than expected, demonstrating the viability of this new procedure.