69 resultados para Materials properties
Resumo:
Metallographic techniques and digital image processing have been used to investigate heat-treated Ti-6Al-4V pitting corrosion, often used as aircraft components. LM and SEM metallography of 'as received', annealed (heating up to 800 degreesC/30 min and cooling furnace) and aged (heating up to 900 degreesC/30 min, quenching in water, heating up to 540 degreesC/240 min and again water-quenched) microstructures reveal pitting sites at primary and secondary alpha/beta interfaces. Microstructural arrangements influence and corrosive environment association on pit morphology could be demonstrated by digital image analysis and results statistical treatment. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Ti-Mo alloys from 4 to 20 Mo wt.% were arc-melted. Their compositions and surfaces were analyzed by EDX, XRF and SEM. The Mo mapping shows a homogeneous distribution for all alloys. The XRD analysis showed that the crystal structure of the alloys is sensitive to the Mo concentration; a mixture of the hexagonal alpha' and orthorhombic alpha '' phases was observed for the Ti-4Mo alloy, and the alpha '' phase is observed almost exclusively when the concentration of Mo added to the Ti reaches 6%. A significant retention of the beta phase is observed for the alloy containing 10% Mo, while at higher Mo concentrations (15% and 20%), retention of phase beta is only verified. Preliminary electrochemical studies have indicated a valve-metal behavior and good corrosion resistance in aerated Ringer solution for all alloys. (c) 2006 Published by Elsevier B.V.
Resumo:
In the last 50 years several studies have been made to understand the relaxation mechanisms of the heavy interstitial atoms present in transition metals and their alloys. Internal friction measurements have been carried out in a Nb-Ti alloy containing 3.1 at.% of Ti produced by the Materials Department of Chemical Engineering Faculty of Lorena (Brazil), with several quantities of oxygen in solid solution using a torsion pendulum. These measurements have been performed by a torsion pendulum in the temperature range from 300 to 700 K with an oscillation frequency between 0.5 and 10 Hz. The experimental results show complex internal friction spectra that have been resolved, into a series of Debye peaks corresponding to different interactions. For each relaxation process it was possible to obtain the height and temperature of the peak, the activation energy and the relaxation time of the process. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The mechanical properties of metals with bee structure, such as niobium and their alloys, are changed of a significant way by the introduction of heavy interstitial elements. These interstitial elements (oxygen, for example) present in the metallic matrix occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. Polycrystalline samples of Nb-0.3 wt.% Ti (Nb-Ti) alloy with oxygen in solid solution were analysed. The anelastic spectroscopy measurements had been made in a torsion pendulum, with frequencies in the Hz range, in a temperature range between 300 and 700 K. The results showed thermally activated relaxation structures were identified four relaxation process attributed to stress-induced ordering of single oxygen, nitrogen and carbon atoms around niobium and stress-induced ordering of single oxygen atoms around titanium atoms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A digital image processing and analysis method has been developed to classify shape and evaluate size and morphology parameters of corrosion pits. This method seems to be effective to analyze surfaces with low or high degree of pitting formation. Theoretical geometry data have been compared against experimental data obtained for titanium and aluminum alloys subjected to different corrosion tests. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Titanium alloy parts are ideally suited for advanced aerospace systems and surgical implants because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent corrosion resistance. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy, due to its lower modulus of elasticity and high biocompatibility, is a promising candidate for surgical and aerospace applications. Samples were produced by mixing of initial metallic hydride powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 700 and 1500 degrees C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microbardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like a structure and intergranular P. A few remaining pores are still found, and density above 97% for specimens sintered at 1500 degrees C is reached. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
SiC fiber-reinforced SiC matrix composite (SiCf/SiC) is one of the leading candidates in ceramic materials for engineering applications due to its unique combination of properties such as high thermal conductivity, high resistance to corrosion and working conditions. Fiber-reinforced composites are materials which exhibit a significant improvement in properties like ductility in comparison to the monolithic SiC ceramic. The SiCf/SiC composite was obtained from a C/C composite precursor using convertion reaction under high temperature and controlled atmosphere. In this work, SiC phase presented the stacking faults in the structure, being not possible to calculate the unit cell size, symmetry and bond lengths but it seem equal card number 29-1129 of JCPDS.
Resumo:
The continuous technological advances require materials with properties that conventional material cannot display. Material property combinations are being the focus to the development of composite materials, which are considered a multiphase material that exhibits properties of the constituent phases. One interesting material to be studied as sensing material is the composite made of ferroelectric ceramic and polymeric matrix as a two-phases composite material. In that case, the combinations properties intended are the high piezo and pyroelectric activities of the dense ceramic with the impact resistance, flexibility, formability and low densities of the polymer. Using the piezoelectric property of the composite film, it can be used to detect acoustic emission (AE), which is a transient elastic wave generated by sudden deformation in materials under stress. AE can be applied for evaluating the health of structures in a nondestructive way and without any lapse of time. The preliminary result indicates that the composite Pz34/PEEK can be used as sensing material for nondestructive evaluation. ©2009 IEEE.
Resumo:
The purpose of this study was to evaluate the Shore A hardness and surface roughness of two silicones for maxillofacial prosthetic treatment, under the influence of chemical disinfection and storage. Twenty-eight specimens were obtained, half of which were made of Silastic MDX 4-4210 silicone and, the other half were made of Silastic 732 RTV silicone. The specimens were divided into four groups: Silastic 732 RTV and MDX 4-4210 with disinfection 3 times a week with Efferdent tablets and the same materials without disinfection. The hardness of the materials was analyzed with a Shore A Durometer. The surface roughness was established by a digital portable roughness tester, initially and 2 months after the confection of the specimens. A variance test was applied (2-way ANOVA), followed by Tukey test (the level of significance was set at 1%). The storage time factor statistically influenced (p < 0.01) the materials' properties of hardness and roughness. MDX 4-4210 (28.59 Shore A, 0.789 Ra) presented higher values than Silastic 732 RTV (18.08 Shore A, 0.656 Ra) for both properties. Regarding the disinfection period, there was no significant difference in any of the materials tested. © 2009 Sociedade Brasileira de Pesquisa Odontológica.
Resumo:
SMART material systems offer great possibilities in terms of providing novel and economical solutions to engineering problems. The technological advantages of these materials over traditional ones are due to their unique microstructure and molecular properties. Smart materials such as shape memory alloys (SMA), has been used in such diverse areas of engineering science, nowadays. In this paper, we present a numerical investigation of the dynamics interaction of a nonideal structure (NIS). We analyze the phenomenon of the passage through resonance region in the steady state processes. We remarked that this kind of problem can lead to the so-called Sommerfeld effect: steady state frequencies of the DC motor will usually increase as more power (voltage) is given to it in a step-by-step fashion. When a resonance condition with the structure it is reached, the better part of this energy it is consumed to generate large amplitude vibrations of the foundation without sensible change of the motor frequency as before. The results obtained by using numerical simulations are discussed in details. Copyright © 2009 by ASME.
Resumo:
Polymers blends represent an important approach to obtain materials with modulated properties to reach different and desired properties in designing drug delivery systems in order to fulfill therapeutic needs. The aim of this work was to evaluate the influence of drug loading and polymer ratio on the physicochemical properties of microparticles of cross-linked high amylose starch-pectin blends loaded with diclofenac for further application in controlled drug delivery systems. Thermal analysis and X-ray diffractograms evidenced the occurrence of drug-polymer interactions and the former pointed also to an increase in thermal stability due to drug loading. The rheological properties demonstrated that drug loading resulted in formation of weaker gels while the increase of pectin ratio contributes to origin stronger structures. © 2012 Elsevier Ltd.
Resumo:
Nanostructured films of dioctadecyldimethylammonium bromide (DODAB) and nickel tetrasulfonated phthalocyanine (NiTsPc) were layer-by-layer (LbL) assembled to achieve a synergistic effect considering the distinct properties of both materials. Prior to LbL growth, the effect of NiTsPc on the structure of DODAB vesicles in aqueous medium was investigated by differential scanning calorimetry (DSC). Therefore, DODAB/NiTsPc LbL films were prepared using NiTsPc at concentrations below and above the limit concentration of vesicle formation according to our DSC experiments. As a result, LbL films with distinct nanostructures were obtained, which were studied at micro and nanoscales by micro-Raman and atomic force microscopy, respectively. A linear growth of the LbL films was observed by ultraviolet-visible absorption spectroscopy. However, the bilayer thickness and the surface morphology of the LbL films were radically affected depending on NiTsPc concentration. The electrostatic interaction between DODAB and NiTsPc was identified via Fourier transform infrared (FTIR) absorption spectroscopy as the main driving force responsible for LbL growth. Because LbL films have been widely applied as transducers in sensing devices, DODAB/NiTsPc LbL films having distinct nanostructures were tested as proof-of-principle in preliminary sensing experiments toward dopamine detection using impedance spectroscopy (e-tongue system). The real capacitance vs. dopamine concentration curves were treated using Principal Component Analysis (PCA) and an equivalent electric circuit, revealing the role played by the LbL film nanostructure and the possibility of building calibration curves. © 2013 Elsevier B.V.
Resumo:
Compared with the traditional composites, the incorporation of carbon nanotubes into polymeric matrices can generate materials with superior properties, especially thermal, electrical and tribological properties. The aim of this study was to study the polyamide 6.6/carbon nanotubes (PA 6.6/CNT) nanostructured composites crystallization kinetics. The solution mixing technique was used to obtain the nanostructured composites studied in this work. PA 6.6 films were produced with amounts of 0.1, 0.5, and 1.0 wt% (weight/weight) CNT. X-ray diffraction analyses were performed in order to determine the crystallographic properties of nanostructured composite. The nanostructured composites crystallization kinetic study was performed using the differential scanning calorimetry under isothermal and nonisothermal (dynamic) conditions. The results have shown addition of CNTs in the PA 6.6 reduces the Avrami exponent, affecting the crystallization process of the composite. © The Author(s) 2012.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)