155 resultados para Magazzino Riprogettazione Layout Stoccaggio
Resumo:
This work aimed to study the energy distribution in protected environment during the winter of 2005. A plastic tunnel (27.5 m long, 7.5 m wide, 3.2 m high in the center and 2.00 m high in both lateral sides) was covered with polyethylene 100 micra and black shadow screen (sombrite) in lateral sides at the FCA/UNESP, Botucatu - SP. 142 minievaporimeters (500 ml volume and 147 cm2 area) were evenly distributed and set up at three heights: 0.40 m; 0.80 m and 1.20 m from soil surface in order to analyze energy distribution along the studied area. The greenhouse longitudinal axis was northwest/southeast, based on true north. Geosatistics principles and the GS+ Program were adopted to compare variables. From obtained results, it was concluded that there were significant evaporation variations at different points anf heights; the highest values were the ones closest to the soil surface (0.40m) in July and at highest heights (0.80 and 1.20m). Highest evaporations occurred in the southeastern side of the greenhouse.
Resumo:
This work studied alterations of physical properties of a distroferric red nitosol due to millet (Pennisetum americanum) covering, with or without liming, in a no-tillage system during the agricultural years of 1999/2000 and 2000/2001, using soybean and corn as culture succession. 6m×10m plots, with and without millet as vegetal covering, received only one initial superficial application of limestone, 3.1 t ha-1 in the first half of each plot in order to obtain 70% base saturation (V), after the desiccation of the millet. Some physical properties as soil density, aggregate stability, > 2 mm aggregate proportion, macro and micro porosity were analyzed whereas the chemical analysis determined Ca and Mg macro nutrients, organic matter, soil pH and H+Al. Millet vegetal residues and surface liming did not alter soil density nor the average weight diameter (AWD), > 2 mm aggregate, soil macro porosity and organic matter content, twenty-four months after the no-tillage system implantation for studied experimental conditions. Soil micro porosity was significantly affected in layers deeper than 0.20 m, in treatment with millet and limestone. Calcium, magnesium and H + Al contents and the soil pH values suffered significant alterations in superficial layer, between 0-0.05 m.
Resumo:
Plan disease control techniques are used through the irrigation water, which reduces the labor and it improves application uniformity with smaller contact of the operator with toxic products, lower environmental impact and lower production cost. In order to control Botrytis cinerea the lisianthus culture, this work aimed to evaluate two fungicide application methods with different treatments. The fungicides were: thiophanate methyl (50 g i.a. L-1), thiophanate methyl + chlorothalonil (50 g i.a. L-1 + 35 g i.a. L-1) and iprodione (50 g i.a. L-1). Number of lesions, number of diseased floral buttons and height of the lisianthus plants were evaluated. It was possible to deduce, that in the growth stage (number of lesions in the plant) as well as in the final stage (number of floral buttons) of the lisianthus culture, the most efficient treatments were 2 (thiophanate methyl + chlorothalonil) and 3 (iprodione). Considering that treatment 2 is a mixture of two fungicides, a systemic and a contact one, independently of application methods, the mixture increased efficiency in relation to treatment 1 (thiophanate methyl). Thus, chemigation was as efficient as spreading technique.
Resumo:
The objective of this work was to evaluate different concentrations of nutritional solution in the hydroponic cultivation of Viola x wittrockiana Gams. The experiment was conducted in DFT hydroponic system, in a completely randomized design with a 5×4 factorial scheme and five nutrient solution concentrations (50, 75, 100, 125 and 150%), four evaluation periods with three replications of three plants for each treatment. Plant height, root length, number of leaves, flowers and floral buttons; fresh and dry weight of shoot and root were determined. The results were submitted to variance analysis, Tukey's test for evaluation periods and regression analysis for nutrient solution. A decrease in the development of the shoot and root was observed with an increase of the number of cultivation days; the greatest number of floral buttons occurred in the third week of cultivation. A reduction in the plant height, root system length, the number of leaves and the fresh and dry weight of shoot was observed generally with the increase of nutrient solution concentration.
Resumo:
The knowledge of meteorological elements in protected environment is very important for commercial plants, because of possibility to produce for all the year according to the study conduced in Botucatu - SP, in order to evaluate the effects of different irrigation treatments on three lettuce cultivars. (Lisa, Crespa and American). The study was developed in a polyethilene tunnel with orientation northeast/southwest (NE/SW) and the fertigation through drip irrigation. Leaf number, head diameter, fresh weigh, dry weigh, meteorological elements and evaporation from minievaporimeters were determined. Four treatments of minimum soil water potential were applied: 20, 28, 35 and 45 kPa and the results showed the treatment -35 kPa showed the highest lettuce production and maximurn water efficiency use. The highest productions occurred in May/June, July/September and September/November, while the worst one was in February/April. There was not significant difference of dry mass production among the treatments, independently of the year period with exception of the Crespa cultivar which was superior in September/November. The south face showed the highest evaporation.
Resumo:
The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11. 1.7) activity as an indicator of water stress in plants. The experiment was carried out at the Faculdade de Ciências Agronômicas UNESP, Botucatu, SP. Sweet pepper plants were grown for 230 days after transplanting of seedlings and arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants.
Resumo:
The present study had as its objective the assessment of the possible effects of hydric stress on the growth, physiological characteristics of two different genetic materials from Eucalyptus urograndis. The experiment was carried out in a greenhouse at Faculdade de Ciências Agronômicas of UNESP, campus Botucatu from March to July, 2005. The hydric management was established based on the soil water potential. Two water levels were established, doing the evapotranspired water replacement by pot weighing. Two clones were used, Eucalyptus urograndis 105 and 433, being the first one more resistant to the hydric deficit and the 433 more sensitive to stress. The study was made from a 2×2 factorial (two levels of water × two genetic materials). For the hydric management, the plants were irrigated when they reached a soil water potential of -0.03 MPa or -1.5 MPa. The assessments made were: diffusive water vapor of stomato, transpiration, leaf temperature and leaf water potential. The physiological evaluations throughout the day, in the end of the experiment. Treatments without hydric stress had a higher performance in all studied characteristics, but the clones had no influence. The stomatic resistance followed the potentials, showing higher values in the treatments submitted to hydric deficiency, more intensely for clone 433, being that this also happened with the leaf water potential. The transpiration also followed the leaf water potential and the stomatic resistance more intensely for clone 105 both comparing stressed plants and non-stressed plants. Consequently, the leaf temperatures had higher values for clone 433 on the stressed treatment. Thus, it can be concluded that there was a better performance in plants kept on a soil water potential of -0.03 MPa and a higher resistance to hydric stress for clone 105.
Resumo:
The effects of salt concentration levels in electrical conductivity (EC) were evaluated in chrysanthemum root, cultivated in substrate using two sampling methods, under greenhouse conditions. The experiment was carried out in Paranapanema, São Paulo using the experimental design in randomized blocks and four replications. The treatments consisted of eight sampling periods of substrate solutions in pots: 7, 14, 21, 28, 35, 42, 49 and 56 days after strike root and five salt concentration levels of applied saline solution: 1.42; 1.65; 1.89; 2.13 and 2.36 dS m -1 in the vegetative period and during the reproduction period of flower budding: 1.71; 1.97; 2.28; 2.57 and 2.85 dS m -1. The substrate solution EC monitoring was done using two methods: solution extractors and 1:2 water diluted solution. The use of solution extractors and 1:2 water diluted solution allowed substrate solution EC monitoring along the culture cycle; the amount of salt concentration applied in the substrate caused the substrate salinity increase; the method using solution extractors presented higher EC values in the substrate.
Resumo:
This study was carried out in the city of Araraquara (SP, Brazil), where 1829 people selected randomly from 42 districts were interviewed with regard to their use of medicines, in particular whether and how they read the insert information sheet and the most frequently read items and problems encountered in the text. Surveys were performed in two stages, the first when package inserts were regulated in Brazil by Portaria SVS 110/1997 (Ministry of Health directive) and the second after the new regulation (RDC 140/2003) came into force. Out of 1829 people interviewed, 1597 reported using some medicine. The markedly similar results in both stages of the research pointed to the difficulties encounteved in reading the package inserts, due to the small letters, the obscure language and the massive amount of information. This paper shows that package inserts of medicines need to be simpler, so the patients have an idea of the importance of the medicine and are able to realize soon any problem that might appear due to the use of the medicine and what action they should take. Furthermore, it will be helpful to the evaluation of the package inserts of medicines, elaborated in conformity with RDC 140, if they work effectively as a source of information and guidance for the patient are not simply given a new layout, while maintaining items that impede their understanding and use.
Resumo:
Negative effects of soil compaction have been recognized as one of the problems restricting the root system and consequently impairing yields, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in green house studies are necessary for the development of mechanism which alleviates soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. The experiment was conducted to assess the root length density and root diameter of the corn (Zea mays L.) crop as a function of bulk density and water stress, characterized by the soil density (1.2; 1.4, and 1.6 g cm -3), and two levels of the water content, approximately (70 and 90% field capacity). The statistical design adopted was completely randomized design, with four replicates in a factorial pattern of (3 × 2). The PVC tubes were superimposed with an internal diameter of 20 cm with a height of 40 cm (the upper tube 20 cm, compacted and inferior tube 10 cm), the hardpan with different levels of soil compaction were located between 20 and 30 cm of the depth of the pot. Results showed that: the main effects of subsoil mechanical impedance were observed on the top layer indicating that the plants had to penetrate beyond the favorable soil conditions before root growth was affected from 3.16; 2.41 to 1.37 cm cm -3 (P<0.005). There was a significant difference at the hardpan layer for the two levels of water and 90% field capacity reduced the root growth from 0.91 to 0.60 cm cm -3 (P<0.005). The root length density and root diameter were affected by increasing soil bulk density from 1.2 to 1.6 g cm -3 which caused penetration resistance to increase to 1.4 MPa. Soil water content of 70% field capacity furnished better root growth in all the layers studied. The increase in root length density resulted in increased root volume. It can also be concluded that the effect of soil compaction impaired the root diameter mostly at the hardpan layer. Soil temperature had detrimental effect on the root growth mostly with higher bulk densities.
Resumo:
The conventional system for soil management and preparation has the intensive mechanization as its basic principle and that changes soil properties, especially physical ones, faster and significantly. This study aimed to obtain and compare physical properties such as distribution of particle sizes, density, distribution of pore sizes, curves of water retention and degradation index of a Red Latosol, under intensive cultivation and no-cultivation for six years. Soil samples were collected at depths of 0.1, 0.2, 0.3, 0.4, 0.6, 0.8 and 1.0 m. There was a clay increment as a result of cultivated soil increase. The no-till soil density decreased as depth increased; however, in the arable layer (0.3 m) of the cultivated soil, the opposite was verified. The largest volume of pores was verified in the cultivated soil, especially in the superficial layers. In the smallest applied tension (0.001 MPa), the cultivated soil retained more water; however, starting from 0.033 MPa, the highest humidity values occurred in the no-till soil. The highest degradation index was observed at a depth of 0.1 m in no-till soil. However, that value was superior (0.020) to what is physically considered very poor soil.
Resumo:
An experiment with an Elisa hybrid sweet pepper (Capsicum annuum L) crop using fertirrigation system was carried out in greenhouse. The aim of this study was to evaluate the quantitative effects of an increasing soil saline concentration on the production. The saline concentration was changed by the variation of the KC1 and Ca 2NO 3 concentration in order to obtain high soil electrical conductivity (EC) values. Standard fertigation system (1.5 dS m -1) values were used as control parameters. Besides that, the possibility of saline stress attenuation by applying organic material into the soil was studied. It was observed that the EC levels used in the crop were inversely correlated to the fructification index and the fruit mean weight. Under the most severe treatment (6.0 dS m -1) the fruit mean weight was reduced up to 58% and the mean produced fiuit number per plant was also reduced up to 55%, when compared to the obtained results under controlled conditions. These results demonstrated that the EC variation in the soil solution had strong interference on th production parameters selected for the studies.
Resumo:
The vegetative propagation of Dovyalis hebecarpawas studied using herbaceous cuttings of a hybrid introduced in Brazil by the College of Agriculture, Campus of Jaboticabal-UNESP. The treatments consisted of (1) evaluating the effect of five 3-Indolebutyric acid (IBA) doses (0 (control), 1,000, 3,000, 5,000 and 7,000 mg.L -1); (2) the influence of two kinds of herbaceous cuttings (apical and sub-apical) and (3) the collection position on the plant (upper and lower part of the canopy) at two different times of the year (autumn and spring). The experimental design was completely randomized with four replicates of 10 cuttings each; the analysis was on a 5 × 2 × 2 factorial layout. The growth regulator (IBA) did not influence the rooting of cuttings in either sampling season. The best season for the rooting was spring. Apical cuttings were desirable for rooting in both seasons. In autumn cuttings taken from the lower portion of the plant showed significantly higher rooting values than the ones from the upper portion; and in spring cuttings taken from the upper portion had higher rooting percentages. © 2007 by The Haworth Press. All rights reserved.
Resumo:
This work had as objective verifies the water quality used for irrigation by the vegetables producers of Botucatu-SP area. They were interviewed 27 producers that sell vegetables in the street markets of Botucatu. Among these producers, ten were selected, being one of each place. Three samples of water of each source were collected. The main standard to evaluate the obtained results were the CONAMA Resolution (National Environment Council) N° 357, March 17, 2005, that it establishes the standard for water classification. The Electric Conductivity was evaluated of agreement value suggested by CETESB and the color was verified according to OMS (Health World Organization), for potable water due to CONAMA Resolution not to stipulate a value for classification. For the public health, just the coliformes and nitrate are the preoccupying variables for they be related with the incidence of diseases, so, the analyzed waters, 40% of them (A, F, H and J producers) offer some risk for the health of Botucatu population, second established standard for CONAMA. We can to conclude that in a general way, those waters, are in conditions no alarming, because they don't present values very different from those established by the legislation.
Resumo:
The chemical and physical degradation of the soils by salinity and sodicity problems constitutes a serious obstacle in productive irrigated areas in arid and semi-add regions. In order to eval mate the effect of gypsum on electrical conductivity, pH, exchangeable sodium percentage, sodium, calcium and magnesium content in saturation extract and exchangeable sodium of two saline-sodic soils: one from irrigated Perimeter Engenheiro Arco Verde in the municipality of Condado and another from irrigated Perimeter of São Gonçalo, in the municipality of Sousa both in the Paraiba State Brazil, an experiment was carried out in green house of the Departamento de Solos e Engenharia Rural, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil, in a factorial design 2 × 5 referring the two soils and five gypsum levels equivalent to 0; 3.2; 6.3; 9.4 and 12.5 g kg-1 to each soil. The gypsum application exercised positive effects on reduction of salinity and sodicity. The values of electrical conductivity, exchangeable sodium percentage, pH and contents of soluble and exchangeable sodium in relation to data of the soils before application of treatments with gypsum in both the soils were found to decrease.