88 resultados para MULTIVARIATE CONTROL CHARTS
Resumo:
Recent studies have shown that the X̄chart with variable parameters (Vp X̄ chart) detects process shifts faster than the traditional X̄ chart. This article extends these studies for processes that are monitored by both, X̄ and R charts. Basically, the X̄ and R values establish if the control should or should not be relaxed. When the X̄ and R values fall in the central region the control is relaxed because one will wait more to take the next sample and/or the next sample will be smaller than usual. When the X̄ or R values fall in the warning region the control is tightened because one will wait less to take the next sample and the next sample will be larger than usual. The action limits are also made variable. This paper proposes to draw the action limits (for both charts) wider than usual, when the control is relaxed and narrower than usual when the control is tightened. The Vp feature improves the joint X̄ and R control chart performance in terms of the speed with which the process mean and/or variance shifts are detected. © 1998 IIE.
Resumo:
In which refers to statistical process control, the analysis of univariate cases is not enough for many types of company, being necessary to resort to multivariate cases. Besides, it is usually supposed that the observations are independent. However, the violation of this hypothesis indicates the existence of autocorrelation in the process. In this work, by a basic quantitative approach for an exploratory and experimental research, the study target are the multivariate autocorrelated control charts, using Hotteling T². The ARL values were collected by simulations of a computational program on FORTRAN language, with objective of studying the charts properties, in addition to compare with the
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this article we consider a control chart based on the sample variances of two quality characteristics. The points plotted on the chart correspond to the maximum value of these two statistics. The main reason to consider the proposed chart instead of the generalized variance |S| chart is its better diagnostic feature, that is, with the new chart it is easier to relate an out-of-control signal to the variables whose parameters have moved away from their in-control values. We study the control chart efficiency considering different shifts in the covariance matrix. In this way, we obtain the average run length (ARL) that measures the effectiveness of a control chart in detecting process shifts. The proposed chart always detects process disturbances faster than the generalized variance |S| chart. The same is observed when the size of the samples is variable, except in a few cases in which the size of the samples switches between small size and very large size.
Resumo:
O conceito de controle de qualidade nas operações inserido na agricultura é viabilizado por incidir diretamente nos principais objetivos do processo produtivo: retorno econômico e aumento da produtividade. A colheita mecanizada normalmente é realizada sem que haja controle efetivo para que a variabilidade das perdas fique dentro de padrões aceitáveis. Esta pesquisa teve o objetivo de determinar e caracterizar as perdas e a distribuição da cobertura vegetal após a colheita mecanizada da soja, por meio de ferramenta de controle estatístico de processo (cartas de controle). A média da perda de grãos total foi próxima do limite superior aceitável para a cultura da soja, apresentando alta variabilidade entre os pontos, tornando o processo fora de controle. A distribuição de cobertura vegetal manteve-se em processo controlado, com maior variabilidade onde o relevo foi mais inclinado. A utilização das cartas de controle foi eficiente na identificação dos pontos fora de controle e na avaliação da qualidade do processo de colheita.
Resumo:
Analisar a qualidade da irrigação, além de avaliar seu bom funcionamento, é uma forma de verificar a viabilidade de sua implantação e operação. Como a uniformidade de distribuição é um dos parâmetros mais utilizados para essa avaliação, este trabalho objetivou utilizar técnicas de engenharia de qualidade, usando o índice de capacidade do processo (Cpl) para avaliar a uniformidade de distribuição de água em um sistema de irrigação por aspersão convencional. Os ensaios foram conduzidos no Núcleo Experimental de Engenharia Agrícola, UNIOESTE, com dois aspersores modelo Super10, marca NAANDAN, espaçados 9 m entre si, durante 25 irrigações de 1 h cada. Os dados climáticos foram coletados a cada 10 min, por uma estação meteorológica sem fio. Encontraram-se um CUC médio de 79,72% e velocidade do vento média de 1,85 m s-1. Foram aplicados os testes de controle de qualidade, elaborando os gráficos de controle de Shewhart e calculado o índice de capacidade do processo (Cpl), sendo que os resultados obtidos permitem afirmar que a utilização do índice de capacidade do processo torna-se uma ferramenta poderosa para classificar sistemas de irrigação em função de sua uniformidade de distribuição.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Traditionally, an (X) over bar chart is used to control the process mean and an R chart is used to control the process variance. However, these charts are not sensitive to small changes in the process parameters. The adaptive ($) over bar and R charts might be considered if the aim is to detect small disturbances. Due to the statistical character of the joint (X) over bar and R charts with fixed or adaptive parameters, they are not reliable in identifing the nature of the disturbance, whether it is one that shifts the process mean, increases the process variance, or leads to a combination of both effects. In practice, the speed with which the control charts detect process changes may be more important than their ability in identifying the nature of the change. Under these circumstances, it seems to be advantageous to consider a single chart, based on only one statistic, to simultaneously monitor the process mean and variance. In this paper, we propose the adaptive non-central chi-square statistic chart. This new chart is more effective than the adaptive (X) over bar and R charts in detecting disturbances that shift the process mean, increase the process variance, or lead to a combination of both effects. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
In this article, we propose a new statistic to control the covariance matrix of bivariate processes. This new statistic is based on the sample vat-lances of the two quality characteristics, shortly VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these two variances. The reasons to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar are faster detection of process changes and better diagnostic feature, that is, with the VMAX statistic It is easier to identify the out-of-control variable.
Resumo:
Recent theoretical studies have shown that the X̄ chart with variable sampling intervals (VSI) and the X̄ chart with variable sample size (VSS) are quicker than the traditional X̄ chart in detecting shifts in the process. This article considers the X̄ chart with variable sample size and sampling intervals (VSSI). It is assumed that the amount of time the process remains in control has exponential distribution. The properties of the VSSI X̄ chart are obtained using Markov chains. The VSSI X̄ chart is even quicker than the VSI or VSS X̄ charts in detecting moderate shifts in the process.
Resumo:
A Fortran computer program is given for the computation of the adjusted average time to signal, or AATS, for adaptive X̄ charts with one, two, or all three design parameters variable: the sample size, n, the sampling interval, h, and the factor k used in determining the width of the action limits. The program calculates the threshold limit to switch the adaptive design parameters and also provides the in-control average time to signal, or ATS.
Resumo:
We develop an economic model for X̄ control charts having all design parameters varying in an adaptive way, that is, in real time considering current sample information. In the proposed model, each of the design parameters can assume two values as a function of the most recent process information. The cost function is derived and it provides a device for optimal selection of the design parameters. Through a numerical example one can foresee the savings that the developed model possibly provides. © 2001 Elsevier Science B.V. All rights reserved.