39 resultados para Local concrete damage model
Resumo:
Objective: This study aimed evaluating histologically and histomorphometrically the response of the conjunctive tissue face to the implant of chlorhexidine chips in the subcutaneous tissues of rats. Study Design: In this research 35 male rats Wistar were used to analyze the biocompatibility and the degradation process of chlorhexidine chip. In each animal, it was made 2 incisions for subcutaneous implantation of chlorhexidine chip (test group) and a polytetrafluorethylene membrane (control group). The morphological changes in subcutaneous implantations were assessed after 1, 3, 5, 7, 10, 14, 21 days. The data were submitted to Friedman nonparametric test to analyze the comparisons among observation periods and to allow the comparison among groups. Results: Differences were found in the analysis of the inflammatory response when comparing the tested materials (p values <= 0.05). In test group was observed hemorrhage, edema and intense inflammatory infiltrate predominantly neutrophilic around material. From 3-day and subsequent periods was verified granulation tissue externally at this infiltrate. From 10-day on was observed crescent area of degradation of chlorhexidine chip, associated with neutrophilic and macrophagic infiltrate, that maintained until 21-day. In the control group, moderate inflammatory infiltrate was observed initially, predominantly polymorphonuclear, edema and granulation tissue 3-day period. The inflammatory infiltrate was gradually replaced for granulation tissue, culminating in a fibrous capsule. Giant multinucleate cells situated at contact interface with the coating was examined since 3-day and persisted until 21-day. Conclusion: The chlorhexidine chip induces an intense acute inflammatory response at subcutaneous tissue of rats. Therefore, at conditions of this study was not biocompatible.
Resumo:
It is of major importance to consider non-ideal energy sources in engineering problems. They act on an oscillating system and at the same time experience a reciprocal action from the system. Here, a non-ideal system is studied. In this system, the interaction between source energy and motion is accomplished through a special kind of friction. Results about the stability and instability of the equilibrium point of this system are obtained. Moreover, its bifurcation curves are determined. Hopf bifurcations are found in the set of parameters of the oscillating system.
Resumo:
This work is related with the proposition of a so-called regular or convex solver potential to be used in numerical simulations involving a certain class of constitutive elastic-damage models. All the mathematical aspects involved are based on convex analysis, which is employed aiming a consistent variational formulation of the potential and its conjugate one. It is shown that the constitutive relations for the class of damage models here considered can be derived from the solver potentials by means of sub-differentials sets. The optimality conditions of the resulting minimisation problem represent in particular a linear complementarity problem. Finally, a simple example is present in order to illustrate the possible integration errors that can be generated when finite step analysis is performed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper discusses the application of a damage detection methodology to monitor the location and extent of partial structural damage. The methodology combines, in an iterative way, the model updating technique based on frequency response functions (FRF) with monitoring data aiming at identifying the damage area of the structure. After the updating procedure reaches a good correlation between the models, it compares the parameters of the damage structure with those of the undamaged one to find the deteriorated area. The influence of the FEM mesh size on the evaluation of the extent of the damage has also been discussed. The methodology is applied using real experimental data from a spatial frame structure.
Resumo:
Water waves generated by landslides were long menace in certain localities and the study of this phenomenon were carried out at an accelerated rate in the last decades. Nevertheless, the phase of wave creation was found to be very complex. As such, a numerical model based on Boussinesq equations was used to describe water waves generated by local disturbance. This numerical model takes in account the vertical acceleration of the particles and considers higher orders derivate terms previously neglected by Boussinesq, so that in the generation zone, this model can support high relative amplitude of waves.
Resumo:
In a model with B - L gauge symmetry, right-handed neutrinos may have exotic local B - L charge assignments: two of them with B - L = -4 and the other one having B - L = 5. Then, it is natural to accommodate the right-handed neutrinos with the same B - L charge in a doublet of the discrete S3 symmetry, and the third one in a singlet. If the Yukawa interactions involving right-handed neutrinos are invariant under S3, the quasi-Dirac neutrino scheme arises naturally in this model. However, we will show how in this scheme it is possible to give a value for θ13 in agreement with the Daya Bay results. For example the S3 symmetry has to be broken in the Yukawa interactions involving right-handed charged leptons. © 2013 IOP Publishing Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a new technique to model interfaces by means of degenerated solid finite elements, i.e., elements with a very high aspect ratio, with the smallest dimension corresponding to the thickness of the interfaces. It is shown that, as the aspect ratio increases, the element strains also increase, approaching the kinematics of the strong discontinuity. A tensile damage constitutive relation between strains and stresses is proposed to describe the nonlinear behavior of the interfaces associated with crack opening. To represent crack propagation, couples of triangular interface elements are introduced in between all regular (bulk) elements of the original mesh. With this technique the analyses can be performed integrally in the context of the continuum mechanics and complex crack patterns involving multiple cracks can be simulated without the need of tracking algorithms. Numerical tests are performed to show the applicability of the proposed technique, studding also aspects related to mesh objectivity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)