83 resultados para Local Energy Decay
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It is of major importance to consider non-ideal energy sources in engineering problems. They act on an oscillating system and at the same time experience a reciprocal action from the system. Here, a non-ideal system is studied. In this system, the interaction between source energy and motion is accomplished through a special kind of friction. Results about the stability and instability of the equilibrium point of this system are obtained. Moreover, its bifurcation curves are determined. Hopf bifurcations are found in the set of parameters of the oscillating system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Naturally occuring or man-made systems displaying periodic spatial modulations of their properties on a nanoscale constitute superlattices. Such modulated structures are important both as prototypes of simple nanotechnological devices and as particular examples of emerging spatial inhomogeneity in interacting many-electron systems. Here we investigate the effect different types of modulation of the system parameters have on the ground-state energy and the charge-density distribution of the system. The superlattices are described by the inhomogeneous attractive Hubbard model, and the calculations are performed by density-functional and density-matrix renormalization group techniques. We find that modulations in local electric potentials are much more effective in shaping the system's properties than modulations in the attractive on-site interaction. This is the same conclusion we previously [M.F. Silva, N.A. Lima, A.L. Malvezzi, K. Capelle, Phys. Rev. B 71 (2005) 125130.] obtained for repulsive interactions, suggesting that it is not an artifact of a specific state, but a general property of modulated structures. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The mechanism of the Yb(3+)-->Er(3+) energy transfer as a function of the donor and the acceptor concentration was investigated in Yb(3+)-Er(3+) codoped fluorozirconate glass. The luminescence decay curves were measured and analyzed by monitoring the Er(3+)((4)I(11/2)) fluorescence induced by the Yb(3+)((2)F(5/2)) excitation. The energy transfer microparameters were determined and used to estimate the Yb-Er transfer rate of an energy transfer process assisted by excitation migration among donors state (diffusion model). The experimental transfer rates were determined from the best fitting of the acceptor luminescence decay obtained using a theoretical approach analog to that one used in the Inokuti-Hirayama model for the donor luminescence decay. The obtained values of transfer parameter gamma [gamma(exp)] were always higher than that predicted by the Inokuti-Hirayama model. Also, the experimental transfer rate, gamma(2)(exp), was observed to be higher than the transfer rate predicted by the migration model. Assuming a random distribution among excited donors at the initial time (t=0) and that a fast excitation migration, which occurs in a very short time (t
Resumo:
We report the energy-transfer mechanisms and emission quantum yield measurements of sol-gel-derived Eu3+-based nanohybrids. The matrix of these materials, classified as diureasils and termed U(2000) and U(600), includes urea cross-links between a siliceous backbone and polyether-based segments of two molecular weights, 2000 and 600, respectively. These materials are full-color emitters in which the Eu3+ (5)Do --> F-7(0-4) lines merge with the broad green-blue emission of the nanoscopic matrix's backbone. The excitation spectra show the presence of a large broad band (similar to 27000-29000 cm(-1)) undoubtedly assigned to a ligand-to-metal charge-transfer state. Emission quantum yields range from 2% to 13.0% depending on the polymer molecular weight and Eu3+ concentration. Energy transfer between the hybrid hosts and the cations arises from two different and independent processes: the charge-transfer band and energy transfer from the hybrid's emitting centers. The activation of the latter mechanisms induces a decrease in the emission quantum yields (relative to undoped nanohybrids) and permits a fine-tuning of the emission chromaticity across the Comission Internacionalle d'Eclairage diagram, e.g., (x, y) color coordinates from (0.21, 0.24) to (0.39, 0.36). Moreover, that activation depends noticeably on the ion local coordination. For the diureasils with longer polymer chains, energy transfer occurs as the Eu3+ coordination involves the carbonyl-type oxygen atoms of the urea bridges, which are located near the hybrid's host emitting centers. on the contrary, in the U(600)-based diureasils, the Eu3+ ions are coordinated to the polymer chains, and therefore, the distance between the hybrid's emitting centers and the metal ions is large enough to allow efficient energy-transfer mechanisms.
Resumo:
Transient decay of persistent photoconductivity measurements are carried out in samples of different compositions. The capture barrier for electron trapping by DX centers is obtained using a method which employs the Brooks-Herring equation for the electronic mobility. The effect of polarization of the screening cloud is analysed using Takimoto's potential and specifies the limits of applicability of the Brooks-Herring equation in AlxGa1-xAs.
Resumo:
The complex dynamic Young's modulus of ceramic Nd2-xCexCuO4 with x = 0, 0.05 and 0.20 has been measured from 1.5 to 100 K at frequencies of 1 - 10 kHz. In the undoped sample the modulus starts decreasing below similar to 20 K, instead of approaching a constant value as in a normal solid. The modulus minimum has been interpreted in terms of paraelastic contribution from the relaxation of the Nd3+ 4f electrons between the levels of the ground state doublet, which is split by the interaction with the antiferromagnetically ordered Cu sublattice. The value of the splitting is found to be 0.34 meV, in excellent agreement with inelastic neutron scattering, infrared and specific heat experiments. With doping, the anomaly shifts to lower temperature and decreases in amplitude, consistently with a reduction of the local field from the Cu sublattice. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We give general expressions for the vector asymmetry in the angular distribution of protons in the nonmesonic weak decay of polarized hypernuclei. From these we derive an explicit expression for the calculation of the asymmetry parameter, a(Lambda), which is applicable to the specific cases of He-5(Lambda) and C-12(Lambda) described within the extreme shell model. In contrast to the approximate formula widely used in the literature, it includes the effects of three-body kinematics in the final states of the decay and correctly treats the contribution of transitions originating from single-proton states beyond the s-shell. This expression is then used for the corresponding numerical computation of a(Lambda) within several one-meson-exchange models. Besides the strictly local approximation usually adopted for the transition potential, we also consider the addition of the first-order nonlocality terms. We find values for a(Lambda) ranging from -0.62 to -0.24, in qualitative agreement with other theoretical estimates but in contradiction with some recent experimental determinations.
Resumo:
We investigate the linear optical properties and energy transfer processes in tungstate fluorophosphate glass doped with thulium (Tm3+) and neodymium (Nd3+) ions. The linear absorption spectra from 370 to 3000 nm were obtained. Transitions probabilities, radiative lifetimes, and transition branching ratios were determined using the Judd-Ofelt [Phys. Rev. 127, 750 (1962); J. Chem. Phys. 37, 511 (1962)] theory. Frequency up-conversion to the blue region and fluorescence in the infrared were observed upon pulsed excitation in the range of 630-700 nm. The excitation spectra of the luminescence were obtained to understand the origin of the signals. The temporal decay of the fluorescence was measured for different concentrations of the doping ions. Energy transfer rates among the Tm3+ and Nd3+ ions were also determined.
Resumo:
Irreversible photoexpansion effect has been observed in amorphous Ga10Ge2S65 glasses when its surface was exposed to light with energy greater than the band gap, 3.52 eV. A volume change of about 5% was reached in bulk samples by controlling illumination time and the laser power density. To understand the atomic scale processes of the photoexpansion effect, extended X-ray absorption fine structure (EXAFS) spectroscopy has been used as a local probe of the germanium environment in the glass samples before and after illumination. Modifications are observed in the average coordination shell around Ge atoms in the illuminated sample compared to the non-illuminated one. For the non-illuminated sample, the Ge coordination shell is described by a distorted tetrahedron of sulfur atoms at around 2.20 Angstrom. After illumination, the EXAFS signal can be explained by introducing an additional contribution to this average environment. Based on an analysis of the EXAFS data we proposed a two-shell model of 0.5 oxygen atoms at 2.01 Angstrom and 3.6 sulfur atoms at a 2.20 Angstrom. The existence of Ge-O bonds in the glass after illumination was confirmed by infrared measurements. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The mechanism involved in the Tm3+ (F-3(4))-->Ho3+ (I-5(7)) energy transfer and Tm3+ (H-3(4), H-3(6))-->Tm3+ (F-3(4), F-3(4)) cross relaxation as a function of the donor and acceptor concentrations was investigated in Tm-Ho-codoped fluorozirconate glasses. The experimental transfer rates were determined for the Tm-->Ho energy transfer from the best fit of the acceptor luminescence decay using an expression which takes into account the Inokuti-Hirayama model and localized donor-to-acceptor interaction solution. The original acceptor solution derived from the Inokuti-Hirayama model fits well the acceptor luminescence transient only for low-concentrated systems. The results showed that a fast excitation diffusion that occurs in a very short time (t<