115 resultados para Linear matrix inequality (LMIs)
Resumo:
This paper presents necessary and sufficient conditions for the following problem: given a linear time invariant plant G(s) = N(s)D(s)-1 = C(sI - A]-1B, with m inputs, p outputs, p > m, rank(C) = p, rank(B) = rank(CB) = m, £nd a tandem dynamic controller Gc(s) = D c(s)-1Nc(s) = Cc(sI - A c)-1Bc + Dc, with p inputs and m outputs and a constant output feedback matrix Ko ε ℝm×p such that the feedback system is Strictly Positive Real (SPR). It is shown that this problem has solution if and only if all transmission zeros of the plant have negative real parts. When there exists solution, the proposed method firstly obtains Gc(s) in order to all transmission zeros of Gc(s)G(s) present negative real parts and then Ko is found as the solution of some Linear Matrix Inequalities (LMIs). Then, taking into account this result, a new LMI based design for output Variable Structure Control (VSC) of uncertain dynamic plants is presented. The method can consider the following design specifications: matched disturbances or nonlinearities of the plant, output constraints, decay rate and matched and nonmatched plant uncertainties. © 2006 IEEE.
Resumo:
A systematic procedure of zero placement to design control systems is proposed. A state feedback controller with vector gain K is used to perform the pole placement. An estimator with vector gain L is also designed for output feedback control. A new systematic method of zero assignment to reduce the effect of the undesirable poles of the plant and also to increase the velocity error constant is presented. The methodology places the zeros in a specific region and it is based on Linear Matrix Inequalities (LMIs) framework, which is a new approach to solve this problem. Three examples illustrate the effectiveness of the proposed method.
Resumo:
In some practical problems, for instance, in the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. Thus, a method for state-derivative feedback design applied to uncertain nonlinear systems is proposed in this work. The nonlinear systems are represented by Takagi-Sugeno fuzzy models during the modeling of the problem, allowing to use Linear Matrix Inequalities (LMIs) in the controller design. This type of modeling ease the control design, because, LMIs are easily solved using convex programming technicals. The control design aimed at system stabilisation, with or without bounds on decay rate. The efficiency of design procedure is illustrated through a numerical example.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)