191 resultados para Leishmania Infantum


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the present study was to determine the coinfection of Leishmania sp. with Toxoplasma gondii, Feline Immunodeficiency Virus (FIV) and Feline Leukemia Virus (FeLV) in a population of cats from an endemic area for zoonotic visceral leishmaniasis. An overall 66/302 (21.85%) cats were found positive for Leishmania sp., with infection determined by direct parasitological examination in 30/302(9.93%), by serology in 46/302(15.23%) and by both in 10/302 (3.31%) cats. Real time PCR followed by amplicon sequencing successfully confirmed Leishmania infantum (syn Leishmania chagasi) infection. Out of the Leishmania infected cats, coinfection with FIV was observed in 12/66(18.18%), with T. gondii in 17/66 (25.75%) and with both agents in 5/66(7.58%) cats. FeLV was found only in a single adult cat with no Leishmania infection. A positive association was observed in coinfection of Leishmania and FIV (p < 0.0001), but not with T. gondii (p > 0.05). In conclusion, cats living in endemic areas of visceral leishmaniasis are significantly more likely to be coinfected with Fly, which may present confounding clinical signs and therefore cats in such areas should be always carefully screened for coinfections. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the identification of two distinct homologues of the 70-kDa mitochondrial heat shock protein (mtHSP70) from Leishmania chagasi/Leishmania infantum (Lc2.1 and Lc2.2). in Leishmania species, multiple genes encoding Lc2.2 are present whilst single genes encode Lc2.1. Strikingly, genes encoding Lc2.1-like proteins are absent from Trypanosoma species. Lc2.2 is characterized by a poly-glutamine rich C-terminus, absent from Lc2.1 or mtHSP70 homologues outside the trypanosomatids. Lc2.1 displays unique substitutions within its peptide-binding domain which modify amino acids strictly conserved in cytoplasmic and mitochondrial HSP70 proteins alike. Affinity purified antibodies recognize mainly a single protein in extracts from promastigotes/epimastigotes of various Leishmania/Trypanosoma species. Upon differentiation of Leishmania amazonensis into amastigotes a second protein (presumably Lc2.1) is induced and becomes the predominant mtHSP70 homologue expressed. Subcellular localization of these proteins was investigated and ratified a distribution throughout the mitochondrial matrix. Our results imply novel mtHSP70 functions which evolved within the genus Leishmania. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leishmaniasis is a parasitic zoonosis caused by protozoans of the genus Leishmania transmitted by insects known as phlebotomines, which are found in wild or urban environments. It affects domestic and wild animals and transmission to man happens by accident. The disease occurs in tropical and sub-tropical areas, mainly in Asia, Europe, Africa, and the Americas. There are two forms that affect man: American cutaneous leishmaniasis (ACL) and American visceral leishmaniasis (AVL). The latter is caused by three species of Leishmania: Leishmania (Leishmania) donovani, Leishmania (Leishmania) infantum, and Leishmania (Leishmania) chagasi, which are grouped in the Leishmania (Leishmania) donovani complex. Wild reservoir hosts of L. chagasi known so far are foxes and marsupials. In domestic environment, dogs are the most important reservoir hosts and sources of infection to the vectors Lutzomyia longipalpis. Leishmaniasis is difficult to control, causing epidemic outbreaks, thus being an important public health problem. Due to lesions caused by the mucocutaneous type and the severity of those caused by the visceral type in humans, visceral leishmaniasis is one of the main public health concerns. This paper is part of the monograph presented at the end of the residency program in the field of Zoonosis and Public Health at the School of Veterinary Sciences and Animal Husbandry, São Paulo State University, UNESP, Botucatu, São Paulo State, Brazil, in 2005.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aiming to improve the diagnosis of canine leishmaniasis (CanL) in an endemic area of the Northwest region of São Paulo State, Brazil, the efficacy of parasitological, immunological and molecular diagnostic methods were studied. Dogs with and without clinical sips of the disease and positive for Leishmania, by direct parasite identification on lymph node smears and/or specific antibody detection by ELISA, were selected for the study. According to the clinical signs, 89 dogs attending the Veterinary Hospital of UNESP in Aracatuba (SP, Brazil) were divided into three groups: symptomatic (36%), oligosymptomatic (22%) and asymptomatic (22%). Twenty-six dogs from an area non-endemic for CanL were used as negative controls (20%). Fine-needle aspiration biopsies (FNA) of popliteal lymph nodes were collected and Diff-Quick (R)-stained for optical microscopy. Direct immumofluorescence, immunocytochemistry and parasite DNA amplification by PCR were also performed. After euthanasia, fragments of popliteal lymph nodes, spleen, bone marrow and liver were collected and processed for HE and immunohistochemistry. Parasite detection by both HE and immunohistochemistry was specifically more effective in lymph nodes, when compared with the other organs. Immunolabeling provided higher sensitivity for parasite detection in the tissues. In the symptomatic group, assay sensitivity was 75.61% for direct parasite search on Diff-Quick (R)-stained FNAs, 92.68% for direct immunofluorescence, 92.68% for immunocytochemistry and 100% for PCR; the corresponding values in the other clinical groups were: 32, 60, 76 and 96% (oligosymptomatic), and 39.13, 73.91, 100 and 95.65% (asymptomatic). Results of the control animals from the CanL non-endemic area were all negative, indicating that the methods used were 100% specific. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visceral leishmaniasis in dogs is described as a chronic disease whose main symptoms are progressive weigth loss, cachexy and dermatologic lesions. Recently, the disease has been associated to neurologic disorders. A total of 40 dogs with visceral leishmaniasis were divided into two groups. The first composed of dogs without neurological signs (n=30) and the second by dogs with neurological disorders (n=10). Brain samples were collected, stored in 10% buffered formalin and subjected to immunohistochemical examination for amastigotes forms of Leishmania (Leishmania) infantum chagasi, CD3+, CD4+ and CD8+ T lymphocytes and macrophages. Imunnohistochemistry evaluation revealed no amastigote forms of the parasite. CD3+ T lymphocytes were present in 24/30 (80%) dogs without neurological signs and in all dogs from the second group (p=0.0011). CD4+ and CD8+ were rarely observed, with CD4+ immunostaining in 10/40 (25%) dogs, from which half of them had neurological disease (p=0.0090). The presence of CD8+ was detected only in 4/10 (40%) dogs from neurological group (p=0.0021). Macrophages were detected in 38/40 (95%) dogs, without significant differences between groups (p=0.7664).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visceral leishmaniasis is a multisystemic zoonotic disease that can manifest with several symptoms, including neurological disorders. To investigate the pathogenesis of brain alterations occurring during visceral leishmaniasis infection, the expression of the cytokines IL-1β, IL-6, IL-10, IL-12p40, IFN-γ, TGF-β and TNF-α and their correlations with peripheral parasite load were evaluated in the brains of dogs naturally infected with Leishmania infantum. IL-1β, IFN-γ and TNF-α were noticeably up-regulated, and IL-10, TGF-β and IL-12p40 were down-regulated in the brains of infected dogs. Expression levels did not correlate with parasite load suggestive that the brain alterations are due to the host's immune response regardless of the phase of the disease. These data indicate the presence of a pro-inflammatory status in the nervous milieu of dogs with visceral leishmaniasis especially because IL-1β and TNF-α are considered key factors for the initiation, maintenance and persistence of inflammation. © 2012 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure. © 2013 Lima et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background:Lutzomyia longipalpis (Diptera: Psychodidae) is the major vector of Leishmania (Leishmania) infantum and thus plays a crucial role in the epidemiology of American visceral leishmaniasis (AVL). This vector is the best studied species of sand fly in the Neotropical region. Many studies claim that this vector is in fact a species complex; however there is still no consensus regarding the number of species that belong into this complex or the geographical distribution of sibling species. The aim of the present study was to analyze the genetic relationships within Lu. longipalpis populations in the state of Mato Grosso do Sul (MS), Brazil.Methodology/Principal Findings:We collected 30 Lu. longipalpis (15 females and 15 males) from five localities (Campo Grande, Três Lagoas, Aquidauana, Miranda and Bonito) and 30 Lu. Cruzi from Corumbá, totaling 180 sandflies from MS, and 30 Lu. longipalpis from Estrela de Alagoas, state of Alagoas (AL), Northeast Brazil. We show that eight previously described microsatellite loci were sufficient in distinguishing Lu. longipalpis from Lu. Cruzi, which is a closely related species, and in differentiating between Lu. longipalpis collected in MS versus Estrela de Alagoas. Analyses of the genotypes revealed introgression between sympatric Lu. longipalpis and Lu. Cruzi.Conclusions/Significance:Our findings support the hypothesis of cryptic species within the Lu. longipalpis complex. Furthermore, our data revealed introgression between Lu. longipalpis and Lu. cruzi. This phenomenon should be further investigated to determine the level and incidence of hybridization between these two species. We also demonstrated that microsatellite markers are a powerful tool for differentiating sand fly populations and species. The present study has elucidated the population structure of Lu. longipalpis in MS and, by extension, the Neotropical Lu. longipalpis complex itself. © 2013 Santos et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Development of vaccines against canine visceral leishmaniasis (CVL) may provide a prophylactic barrier, but antibody response detected by standard diagnostic techniques may not separate vaccinated from naturally infected dogs. Moreover, anti-Leishmania antibody levels in vaccinated dogs may be detectable for months. Accordingly, the aim of the present study was to comparatively evaluate an in-house ELISA with three serological tests officially adopted by the Brazilian Ministry of Health for the diagnosis of CVL in dogs vaccinated with Leishmune®. A total of 18 mongrel dogs were submitted to a complete protocol of the vaccine, monitored and evaluated in 5 times (T0-T4) up to 180 days after T0. Twenty-one days after the first dose (T1), 50% of the dogs were seropositive by the in-house ELISA and 5.5% by IFAT, while by the official ELISA and DPP® CVL rapid test all dogs tested negative. At time T2, 42 days after of the first dose, 100%, 83.3%, 11.1%, and 5.5% of the dogs were seropositive by the in-house ELISA, IFAT, official ELISA kit and the DPP® CVL rapid test, respectively. Ninety days after the first dose (T3), 100%, 83.3%, 72.2% and 33.3% of the dogs were seropositive by the in-house ELISA, official ELISA kit, IFAT, and the DPP® CVL rapid test, respectively. Finally, at time T4, 88.8%, 33.3%, 11.1% and 5.5% of the dogs were seropositive by the in-house ELISA, official ELISA kit, DPP® CVL rapid test and IFAT, respectively. In conclusion, dogs vaccinated with Leishmune® cross-react by an in-house ELISA and by the three official Brazilian serological tests for the diagnosis of canine visceral leishmaniasis up to six months after the first vaccine dose, and may be mistakenly diagnosed and removed. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FCAV