77 resultados para Laplace eigenfunctions
Resumo:
A general form for ladder operators is used to construct a method to solve bound-state Schrödinger equations. The characteristics of supersymmetry and shape invariance of the system are the start point of the approach. To show the elegance and the utility of the method we use it to obtain energy spectra and eigenfunctions for the one-dimensional harmonic oscillator and Morse potentials and for the radial harmonic oscillator and Coulomb potentials.
Resumo:
A study was conducted on the interaction of two pulses in the nonlinear Schrodinger (NLS) model. The presence of different scenarios of the behavior depending on the initial parameters of the pulses, such as the pulse areas, the relative phase shift, the spatial and frequency separations were shown. It was observed that a pure real initial condition of the NLS equation can result in additional moving solitons.
Resumo:
Predictability is related to the uncertainty in the outcome of future events during the evolution of the state of a system. The cluster weighted modeling (CWM) is interpreted as a tool to detect such an uncertainty and used it in spatially distributed systems. As such, the simple prediction algorithm in conjunction with the CWM forms a powerful set of methods to relate predictability and dimension.
Resumo:
We suggest a method for constructing trial eigenfunctions for excited states to be used in the variational method. This method is a generalization of the one that uses a superpotential to obtain the trial functions for the ground state. The construction of an effective hierarchy of Hamiltonians is used to determine excited variational energies. The first four eigenvalues for a quartic double-well potential are calculated for several values of the potential parameter. The results are in very good agreement with the eigenvalues obtained by numerical integration.
Resumo:
The energy states of the confined harmonic oscillator and the Hulthén potentials are evaluated using the Variational Method associated to Supersymmetric Quantum Mechanics.
Resumo:
We establish a Green-Nagdhi model equation for capillary-gravity waves in (2+1) dimensions. Through the derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses (1 + 1) traveling-wave solutions for almost all the values of the Bond number θ (the special case θ=1/3 is not studied). These waves become singular when their amplitude is larger than a threshold value, related to the velocity of the wave. The limit angle at the crest is then calculated. The stability of a wave train is also studied via a Benjamin-Feir modulational analysis. ©2005 The American Physical Society.
Resumo:
Forecasting, for obvious reasons, often become the most important goal to be achieved. For spatially extended systems (e.g. atmospheric system) where the local nonlinearities lead to the most unpredictable chaotic evolution, it is highly desirable to have a simple diagnostic tool to identify regions of predictable behaviour. In this paper, we discuss the use of the bred vector (BV) dimension, a recently introduced statistics, to identify the regimes where a finite time forecast is feasible. Using the tools from dynamical systems theory and Bayesian modelling, we show the finite time predictability in two-dimensional coupled map lattices in the regions of low BV dimension. © Indian Academy of Sciences.
Resumo:
For a typical non-symmetrical system with two parallel three phase transmission lines, modal transformation is applied using some examples of single real transformation matrices. These examples are applied searching an adequate single real transformation matrix to two parallel three phase transmission line systems. The analyses are started with the eigenvector and eigenvalue studies, using Clarke's transformation or linear combinations of Clarke's elements. The Z C and parameters are analyzed for the case that presents the smallest errors between the exact eigenvalues and the single real transformation matrix application results. The single real transformation determined for this case is based on Clarke's matrix and its main characteristic is the use of a unique homopolar reference. So, the homopolar mode becomes a connector mode between the two three-phase circuits of the analyzed system. ©2005 IEEE.
Resumo:
In transmission line transient analyses, a single real transformation matrix can obtain exact modes when the analyzed line is transposed. For non-transposed lines, the results are not exact. In this paper, non-symmetrical and non transposed three-phase line samples are analyzed with a single real transformation matrix application (Clarke's matrix). Some interesting characteristics of this matrix application are: single, real, frequency independent, line parameter independent, identical for voltage and current determination. With Clarke's matrix use, mathematical simplifications are obtained and the developed model can be applied directly in programs based on time domain. This model works without convolution procedures to deal with phase-mode transformation. In EMTP programs, Clarke's matrix can be represented by ideal transformers and the frequency dependent line parameters can be represented by modified-circuits. With these representations, the electrical values at any line point can be accessed for phase domain or mode domain using the Clarke matrix or its inverse matrix. For symmetrical and non-transposed lines, the model originates quite small errors. In addition, the application of the proposed model to the non-symmetrical and non-transposed three phase transmission lines is investigated. ©2005 IEEE.
Resumo:
In this work we solve exactly a class of three-body propagators for the most general quadratic interactions in the coordinates, for arbitrary masses and couplings. This is done both for the constant as the time-dependent couplings and masses, by using the Feynman path integral formalism. Finally, the energy spectrum and the eigenfunctions are recovered from the propagators. © 2005 Elsevier Inc. All rights reserved.
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes α, β and zero. After that, Quasi-modes a and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km. ©2006 IEEE.
Resumo:
Clarke's matrix has been used as an eigenvector matrix for transposed three-phase transmission lines and it can be applied as a phase-mode transformation matrix for transposed cases. Considering untransposed three-phase transmission lines, Clarke's matrix is not an exact eigenvector matrix. In this case, the errors related to the diagonal elements of the Z and Y matrices can be considered negligible, if these diagonal elements are compared to the exact elements in domain mode. The mentioned comparisons are performed based on the error and frequency scan analyses. From these analyses and considering untransposed asymmetrical three-phase transmission lines, a correction procedure is determined searching for better results from the Clarke's matrix use as a phase-mode transformation matrix. Using the Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. Applying the corrected transformation matrices, the relative values of the off-diagonal elements are decreased. The comparisons among the results of these analyses show that the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2006 IEEE.
Resumo:
Some constant matrices can be used as phase-mode transformation matrices for transposed three-phase transmission lines. Clarke's matrix is one of these options. Its application as a phase-mode transformation matrix for untransposed three-phase transmission lines has been analyzed through error and frequency scan comparisons. Based on an actual untransposed asymmetrical three-phase transmission line example, a correction procedure is applied searching for better results from the Clarke's matrix applicaton as a phase-mode transformation matrix. The error analyses are carried out using Clarke's matrix and the new transformation matrices obtained from the correction procedure. Applying Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. If the the corrected transformation matrices are used, the relative values of the off-diagonal elements are decreased. Based on the results of these analyses, the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2007 IEEE.
Resumo:
The Brazilian Geodetic Network started to be established in the early 40's, employing classical surveying methods, such as triangulation and trilateration. With the introduction of satellite positioning systems, such as TRANSIT and GPS, that network was densified. That data was adjusted by employing a variety of methods, yielding distortions in the network that need to be understood. In this work, we analyze and interpret study cases in an attempt to understand the distortions in the Brazilian network. For each case, we performed the network adjustment employing the GHOST software suite. The results show that the distortion is least sensitive to the removal of invar baselines in the classical network. The network would be more affected by the inexistence of Laplace stations and Doppler control points, with differences up to 4.5 m.
Resumo:
A positive measure ψ defined on [a,b] such that its moments μn=∫a btndψ(t) exist for n=0,±1,±2,⋯, is called a strong positive measure on [a,b]. If 0≤a