335 resultados para Landsat satellites
Resumo:
Many studies have assessed the process of forest degradation in the Brazilian Amazon using remote sensing approaches to estimate the extent and impact by selective logging and forest fires on tropical rain forest. However, only a few have estimated the combined impacts of those anthropogenic activities. We conducted a detailed analysis of selective logging and forest fire impacts on natural forests in the southern Brazilian Amazon state of Mato Grosso, one of the key logging centers in the country. To achieve this goal a 13-year series of annual Landsat images (1992-2004) was used to test different remote sensing techniques for measuring the extent of selective logging and forest fires, and to estimate their impact and interaction with other land use types occurring in the study region. Forest canopy regeneration following these disturbances was also assessed. Field measurements and visual observations were conducted to validate remote sensing techniques. Our results indicated that the Modified Soil Adjusted Vegetation Index aerosol free (MSAVI(af)) is a reliable estimator of fractional coverage under both clear sky and under smoky conditions in this study region. During the period of analysis, selective logging was responsible for disturbing the largest proportion (31%) of natural forest in the study area, immediately followed by deforestation (29%). Altogether, forest disturbances by selective logging and forest fires affected approximately 40% of the study site area. Once disturbed by selective logging activities, forests became more susceptible to fire in the study site. However, our results showed that fires may also occur in undisturbed forests. This indicates that there are further factors that may increase forest fire susceptibility in the study area. Those factors need to be better understood. Although selective logging affected the largest amount of natural forest in the study period, 35% and 28% of the observed losses of forest canopy cover were due to forest fire and selective logging combined and to forest fire only, respectively. Moreover, forest areas degraded by selective logging and forest fire is an addition to outright deforestation estimates and has yet to be accounted for by land use and land cover change assessments in tropical regions. Assuming that this observed trend of land use and land cover conversion continues, we predict that there will be no undisturbed forests remaining by 2011 in this study site. Finally, we estimated that 70% of the total forest area disturbed by logging and fire had sufficiently recovered to become undetectable using satellite data in 2004. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Landsat images obtained in different periods were analysed with the aid of a transmission densitometer. Forest, pasture and crops were studied during Jan., April, July and Oct. and the results suggest the possibility of studying crop cycles using this method. -from Field Crop Abstracts
Resumo:
Presents a study of the spectral response of a specific vegetative cover under the same soil elevation angle, but in different classes of slope, through Landsat transparencies. The site located in the region of Presidente Prudente was studied through topo sheets to define the classes of slope. Densitometric readings were obtained of selected areas, representing the terrain reflectance in different relief conditions. The cluster analysis was used to classify the densitometric data according to the classes of slope. The map of classes of slope/reflectance of the terrain surface showed a high correlation, mainly for the classes A (0-10%) and B (10-20%). -from English summary
Resumo:
The dynamics of some fictitious satellites of Venus and Mars are studied considering only solar perturbation and the oblateness of the planet, as disturbing forces. Several numerical integrations of the averaged system, taking different values of the obliquity of ecliptic (a), show the existence of strong chaotic motion, provided that the semi major axis is near a critical value. As a consequence, large increase of eccentricities occur and the satellites may collide with the planet or cross possible internal orbits. Even starting from almost circular and equatorial orbits, most satellites can easily reach prohibitive values. The extension of the chaotic zone depends clearly on the value ε, so that, previous regular regions may become chaotic, provided ε increases sufficiently. © 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
We study the problem of gravitational capture in the framework of the Sun-Uranus-particle system. Part of the space of initial conditions is systematically explored, and the duration of temporary gravitational capture is measured. The location and size of different capture-time regions are given in terms of diagrams of initial semimajor axis versus eccentricity. The other initial orbital elements - inclination (i), longitude of the node (Ω), argument of pericenter (ω), and time of pericenter passage (τ) - are first taken to be zero. Then we investigate the cases with ω = 90°, 180°, and 270°. We also present a sample of results for Ω = 90°, considering the cases i = 60°, 120°, 150°, and 180°. Special attention is given to the influence of the initial orbital inclination, taking orbits initially in opposition at pericenter. In this case, the initial inclination is varied from 0° to 180° in steps of 10°. The success of the final stage of the capture problem, which involves the transformation of temporary captures into permanent ones, is highly dependent on the initial conditions associated with the longest capture times. The largest regions of the initial-conditions space with the longest capture times occur at inclinations of 60°-70° and 160°. The regions of possible stability as a function of initial inclination are also delimited. These regions include not only a known set of retrograde orbits, but also a new sort of prograde orbit with inclinations greater than zero.
Resumo:
This study aims to examine the thermal structure of the urban climate based on the interpretation of the satellite Landsat 7 (thermal channel) and measures for the area. It identifies how the production of urban climate develops based on an analysis of the structure of space forms and characteristics of land use and constructive materials in the generation of heat islands and their implications in environmental comfort in a tropical climate medium size city at Brazil. To check intra-urban air temperature, measures were carried out in mobile transects in the North-South and East-West routes. Thermal Channel data of Landsat-7, were converted to surface values. The results showed that the pattern of urbanization and characteristics of land use are responsible for the distribution of temperature generating heat islands in downtown and popular densely built neighborhoods. In those cases the highest indexes of social segregation added to higher temperature also provokes elevation in the number of illnesses and morbidity cases, mostly of respiratory diseases.
Resumo:
Some orbital characteristics of lunar artificial satellites is presented taking into account the perturbation of the third-body in elliptical orbit and the non-uniform distribution of mass of the Moon. We consider the development of the non-sphericity of the Moon in zonal spherical harmonics up to the ninth order and sectorial harmonic C 22 due to the lunar equatorial ellipticity. The motion of the artificial satellite is studied under the single-averaged analytical model. The average is applied to the mean anomaly of the satellite to analyze low-altitude orbits which are of highest importance for future lunar missions. We found families of frozen orbits with long lifetimes for the problem of an orbiter travelling around the Moon.
Resumo:
This work aims to analyze the land use evolution in the city of Santa Cruz do Rio Pardo - SP through supervised classification of Landsat-5 TM satellite images according to the maximum likelihood (Maxlike), as well as verifying the mapping accuracy through Kappa index, comparing NDVI and SAVI vegetation indexes in different adjustment factors for the canopy substrate and determining the vegetal coverage percentage in all methods used on 2007, May 26 th; 2009, January 7 th and 2009, April 29 th. The Maxlike classification showed several spatial changes in land use over the study period. The most appropriated vegetation indexes were NDVI and SAVI - 0,25 factor, which showed similar values of vegetal coverage percentage, but discrepant from the inferred value for Maxlike classification.
Resumo:
Effects due to resonances in the orbital motion of artificial satellites disturbed by the terrestrial tide are analyzed. The nodal co-rotation resonance, apsidal co-rotation resonance and the Lidov-Kozai's mechanism are studied. The effects of the resonances are analyzed through the variations of the metric orbital elements. Libration and circulation motions for high orbits with high eccentricities are verified for the Lidov-Kozai's mechanism.
Resumo:
In this work, the resonance problem in the artificial satellites motion is studied. The development of the geopotential includes the zonal harmonics J20 and J40 and the tesseral harmonics J22 and J42. Through successive Mathieu transformations, the order of dynamical system is reduced and the final system is solved by numerical integration. In the simplified dynamical model, two critical angles are studied, 2201 and 4211. Numerical results show the time behavior of the semi-major axis and 2 angle.
Resumo:
In the Nilo Coelho irrigation scheme, Brazil, the natural vegetation has been replaced by irrigated agriculture, bringing importance for the quantification of the effects on the energy exchanges between the mixed vegetated surfaces and the lower atmosphere. Landsat satellite images and agro-meteorological stations from 1992 to 2011 were used together, for modelling these exchanges. Surface albedo (α0), NDVI and surface temperature (T0) were the basic remote sensing retrieving parameters necessary to calculate the latent heat flux (λE) and the surface resistance to evapotranspiration (rs) on a large scale. The daily net radiation (Rn) was obtained from α0, air temperature (Ta) and short-wave transmissivity (τsw) throughout the slob equation, allowing the quantification of the daily sensible heat flux (H) by residual in the energy balance equation. With a threshold value for rs, it was possible to separate the energy fluxes from crops and natural vegetation. The averaged fractions of Rn partitioned as H and λE, were in average 39 and 67%, respectively. It was observed an increase of the energy used for the evapotranspiration process inside irrigated areas from 51% in 1992 to 80% in 2011, with the ratio λE/Rn presenting an increase of 3 % per year. The tools and models applied in the current research, can subsidize the monitoring of the coupled climate and land use changes effects in irrigation perimeters, being valuable when aiming the sustainability of the irrigated agriculture in the future, avoiding conflicts among different water users. © 2012 SPIE.
Resumo:
An analytical expansion of the disturbing function arising from direct planetary perturbations on the motion of satellites is derived. As a Fourier series, it allows the investigation of the secular effects of these direct perturbations, as well as of every argument present in the perturbation. In particular, we construct an analytical model describing the evection resonance between the longitude of pericenter of the satellite orbit and the longitude of a planet, and study briefly its dynamic. The expansion developed in this paper is valid in the case of planar and circular planetary orbits, but not limited in eccentricity or inclination of the satellite orbit. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
The precision agriculture technologies such as the spatial variability of soil attributes have been widely studied mostly with sugarcane. Among these technologies have been recently highlighted the use of the vegetation index derived from remote sensing products, such as powerful tools indicating the development of vegetation. This study aimed to analyze the spatial variability of clay content, pH and phosphorus in an Oxisol in an area with sugarcane production, and correlate with the Normalized Difference Vegetation Index (NDVI). The georeferenced grid was created for the soil properties (clay, phosphorus and pH) and generated the maps of spatial variability. For these same sites were calculated the NDVI, in addition to mapping of this ratio, the evaluation of the spatial correlation between this and other studied properties. The clay and phosphorus content showed positive spatial correlation with the NDVI, while no spatial correlation was observed between NDVI and pH. The satellite images from the sensor ETM + Landsat were used to correlate to NDVI to observe the spatial variability of the studied attributes.