46 resultados para LYMPHOBLASTOID CELL LINE
Resumo:
Due to the need to identify new antimutagenic agents and to determine their mechanism of action, the present study examined the mechanism of action of the P-glucan with regard to antimutagenicity using the micronucleus assay in CHO-kl and HTC cell lines. The mutagenicity experiments were performed with three different concentrations of P-glucan (5, 10, and 20 mu g/mL), in wich only the highest dose showed mutagenic activity. In the antimutagenicity experiments, the same concentrations of P-glucan were combined with a mutagenic agent, methylmethane sulfonate, or 2-aminoanthracene, using four different treatment protocols: pre-treatment, simultaneous treatment (simple and with pre-incubation), and post-treatment. The results indicate that the CHO-kl cell line treated with MMS presented a chemopreventive activity for all the doses of P-glucan in the different treatment protocols, except for the lowest dose in post-treatment. When HTC cell line treated with MMS is analysed, a chemopreventive activity can be verified for the highest dose in both pre- and post-treatment. For the simple simultaneous treatment, the three doses demonstrated efficacy, while for the simultaneous treatment with pre-incubation only the intermediate concentration was effective. In HTC treated with 2AA both the lowest dose in the pre-treatment protocol and the post-treatment protocol did not show efficacy in preventing DNA damage. The evaluation of the different protocols and the damage decrease percentages observed suggest that P-glucan has both desmutagenic and bioantimutagenic activity. It is necessary, however, to note that efficacy and mechanism of action are subject to variation when compared the two cell lines, since in HTC, representing a drug-metabolizing system, this substance can show a diminished chemopreventive capacity. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
5-azacytidine (5-azaC) treatment combined with cytosine arabinoside (ara-C) or caffeine were performed in vitro in Chinese hamster cells, CHO-K1 (wild-type) and xrs-5 (mutant) cell lines, in order to compare the cell response to the induction of chromosomal aberrations. Exponentially growing cells were treated with 5-azaC (4-16 uM) for 1 h, the cells were washed and incubated for 7 h, and 500 uM caffeine or 5 uM ara-C were added to the cultures for the last 2 h. In both cell lines, 5-azaC induced a significantly increase (P<0.01) in the frequencies of aberrations; in the combined treatments (5-azaC + Ara-C), a significant reduction (P<0.05) was observed for the aberrations which were randomly distributed. Caffeine had no influence at the same conditions. 5-azaC induced-DNA lesions were probably processed at S/G2 phase in a common pathway in both cell lines, but alternatively, 5-azaC may cause xrs-5 cells to revert to the wild-type.
Resumo:
The search for molecular markers to improve diagnosis, individualize treatment and predict behavior of tumors has been the focus of several studies. This study aimed to analyze homeobox gene expression profile in oral squamous cell carcinoma (OSCC) as well as to investigate whether some of these genes are relevant molecular markers of prognosis and/or tumor aggressiveness. Homeobox gene expression levels were assessed by microarrays and qRT-PCR in OSCC tissues and adjacent non-cancerous matched tissues (margin), as well as in OSCC cell lines. Analysis of microarray data revealed the expression of 147 homeobox genes, including one set of six at least 2-fold up-regulated, and another set of 34 at least 2-fold down-regulated homeobox genes in OSCC. After qRT-PCR assays, the three most up-regulated homeobox genes (HOXA5, HOXD10 and HOXD11) revealed higher and statistically significant expression levels in OSCC samples when compared to margins. Patients presenting lower expression of HOXA5 had poorer prognosis compared to those with higher expression (P=0.03). Additionally, the status of HOXA5, HOXD10 and HOXD11 expression levels in OSCC cell lines also showed a significant up-regulation when compared to normal oral keratinocytes. Results confirm the presence of three significantly upregulated (>4-fold) homeobox genes (HOXA5, HOXD10 and HOXD11) in OSCC that may play a significant role in the pathogenesis of these tumors. Moreover, since lower levels of HOXA5 predict poor prognosis, this gene may be a novel candidate for development of therapeutic strategies in OSCC.
Resumo:
Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1 and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using immunohistochemical staining of the primary tumor, cultured cells and xenografts implanted in immunodeficient mice. We also investigated the ability of the cell lines to form colonies and copy number alterations by array comparative genomic hybridization. Histopathological analysis showed that the invasive primary tumor from which the MACL-1 cell line was derived, was a luminal A subtype carcinoma, while the ductal carcinoma in situ (DCIS) that gave rise to the MGSO-3 cell line was a HER2 subtype tumor, both showing different proliferation levels. The cell lines and the tumor xenografts in mice preserved their high proliferative potential, but did not maintain the expression of the other markers assessed. This shift in expression may be due to the selection of an 'establishment' phenotype in vitro. Whole-genome DNA evaluation showed a large amount of copy number alterations (CNAs) in the two cell lines. These findings render MACL-1 and MGSO-3 the first characterized Brazilian breast cancer cell lines to be potentially used for comparative research. © 2013 Spandidos Publications Ltd. All rights reserved.
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Pós-graduação em Ciências Fisiológicas - FOA
Resumo:
Soybean isoflavonoids have received significant attention due to their potential anticarcinogenic and antiproliferative effects and possible role in many signal transduction pathways. However, their mechanisms of action and their molecular targets remain to be further elucidated. In this paper, we demonstrated that two soybean isoflavones (genistein and daidzein) reduced the proliferation of the human colon adenocarcinoma grade II cell line (HT-29) at concentrations of 25 and 50-100 mu M, respectively. We then investigated the effects of genistein and daidzein by RT-PCR on molecules that involved in tumor development and progression by their regulation of cell proliferation. At a concentration of 50 mu M genistein, there was suppressed expression of beta-catenin (CTNNBIP1). Neither genistein nor daidzein affected APC (adenomatous polyposis coli) or survivin (BIRC5) expression when cells were treated with concentrations of 10 or 50 mu M. These data suggest that the down-regulation of beta-catenin by genistein may constitute an important determinant of the suppression of HT-29 cell growth and may be exploited for the prevention and treatment of colon cancer.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)