104 resultados para LASER FREQUENCY MEASUREMENTS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study was to investigate the effect of Er:YAG laser on surface treatment to the bond strength of repaired composite resin after aged. Sixty specimens (n = 10) were made with composite resin (Z250, 3M) and thermocycled with 500 cycles, oscillating between 5 to 55A degrees C. The specimens were randomly separated in six groups which suffered the following superficial treatments: no treatment (GI, control), wearing with diamond bur (GII), sandblasted with aluminum oxide with 27.5 A mu m particles (GIII) for 10 s, 200 mJ Er:YAG laser (GIV), 300 mJ Er:YAG laser (GV), and 400 mJ Er:YAG laser (GVI), with the last 3 groups under a 10 Hz frequency for 10 s. Restoration repair was done using the same composite. The shear test was done into the Universal testing machine MTS-810. Analyzing the results through ANOVA and Tukey test, no significant differences were found (p-value is 0.5120). Average values analysis showed that superficial treatment with aluminum oxide presented the highest resistance to shear repair interface (8.91MPa) while 400 mJ Er:YAG laser presented the lowest (6.76 MPa). Fracture types analysis revealed that 90% suffered cohesive fractures to GIII. The Er:YAG laser used as superficial treatment of the aged composite resin before the repair showed similar results when used diamond bur and sandblasting with aluminum oxide particles.
Resumo:
The aim of this study was to evaluate the shrinkage of a microhybrid dental composite resin photo-activated by one LED with different power densities by means of speckle technique. The dental composite resin Filtek (TM) Z-250 (3M/ESPE) at color A(2) was used for the samples preparation. Uncured composite was packed in a metallic mold and irradiated during 20 s from 100 to 1000 mW cm(-2). For the photo-activation of the samples, it was used a LED prototype (Light Emission Diode) with wavelength centered at 470 nm and adjustable power density until 1 W cm(-2). The speckle patterns obtained from the bottom composite surfaces were monitored using a CCD camera without lens. The speckle field is recorded in a digital picture and stored by CCD camera as the carrier of information on the displacement of the tested surface. The calculated values were obtained for each pair of adjacent patterns and the changes in speckle contrast as a function of time were obtained from six repeated measurements. The speckle contrasts obtained from the bottom surface with 100 mW cm(-1) were smaller than those than the other power densities. The higher power densities provided the higher shrinkage.
Resumo:
The purpose of the present study was to evaluate in vitro the degree of marginal leakage in Class V cavities involving the cementoenamel junction. Cavities were 4 rum wide and 2 mm deep. The specimens received dentin pretreatment (37% phosphoric acid) followed by the Single Bond (3M) adhesive system application. The 40 specimens were then divided into four groups: Group I (control); Group 2 (Nd:YAG laser at 120 mJ/pulse, frequency of 10 Hz, power of 1.2 W); Group 3 (Nd:YAG laser at 140 mJ/pulse, frequency of 10 Hz, power of 1.4 W); Group 4 (Nd:YAG laser at 160 mJ/pulse, frequency of 10 Hz, power of 1.6 W). The cavities were restored with Z100 composite resin (3M) and light cured at 300-600 mW/cm(2) light intensity. Specimens were thermocycled to 500 cycles from 2-50 degrees C. After that, they were dried and sealed with nail varnish, respecting 1 mm around the restorations, and immersed in 0.5% methylene blue solution for 4 h. After this period, the teeth were rinsed, dried, sectioned, and analyzed in a stereoscopic loupe. The highest leakage scores were considered for each specimen. The results were statistically analyzed by the analysis of variance (ANOVA) Kruskal-Wallis test to the 5% level. For both the enamel and cementum, there was a decrease in marginal leakage with the application of laser energy; no significant differences were observed for Groups 2, 3, and 4. The results also showed a smaller tendency to marginal leakage on the cementum than on the enamel.
Resumo:
Objective. To evaluate the effectiveness of the color change of hybrid light-emitting diode (LED) and low-intensity infrared diode laser devices for activating dental bleaching and to verify the occurrence of a color regression with time. Material and methods. A total of 180 specimens obtained from human premolars were immersed in a coffee solution for 15 days for darkening and then divided into eight experimental groups (n = 20 in each) as follows: G1, bleaching without light; G2, bleaching with halogen light; G3, bleaching with a blue LED (1000 mW/470 nm) and a laser device (120 mW/795 nm) simultaneously; G4, bleaching with an LED emitting blue light (1000 mW/470 nm); G5, bleaching with a blue LED (800 mW/470 nm) and a laser device (500 mW/830 nm) simultaneously; G6, bleaching with a blue LED device (800 mW); G7, bleaching with a green LED (600 mW/530 nm) and a laser device (120 mW/795 nm) simultaneously; and G8, bleaching with a green LED (600 mW). Three measurements were performed (at baseline and 14 days and 12 months after bleaching) using a Vita Easyshade spectrophotometer. The data were submitted to two-way ANOVA and a Tukey test. Results. All groups showed significantly higher Delta E values than Group G1, with the exception of Group G8. Variations in the Delta E values at 14 days were significant when compared with those obtained at baseline and after 12 months. Conclusions. Light activation of the bleaching gel provided faster and more intense bleaching than use of the bleaching gel without light activation. Combinations of low-intensity diode lasers are ineffective as a bleaching gel activator. Color regression was observed after 12 months of storage.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It is well known that the interstitial elements present in solid solution in metals interact with the matrix by a relaxation process known as stress induced ordering. Traditionally this relaxation process is observed in the internal friction measurements. It is a common practice that researchers present the results of the frequency together with internal friction without giving any analysis. In this work we apply an expression which relates the variation of frequency with temperature and analyse the experimental results cited in the literature of the relaxation process due to the stress induced ordering of oxygen and nitrogen present in niobium and tantalum.
Resumo:
Internal friction measurements were made in the Nb-Ti alloy containing 0.3 wt. % of Ti, doped with various quantities of oxygen (0.04 to 0.08 wt. %) utilizing a torsion pendulum. These measurements were performed in the temperature range of 300 K to 700 K with the oscillation frequency about 1.0 Hz. The experimental results showed relaxation peaks due the stress induced ordering of oxygen atom and pairs of oxygen atom around the niobium atoms (metallic matrix) and around titanium atoms (substitutional solute).
Resumo:
The nonlinear refractive index, n(2), of films based on the new glass system Sb(2)O(3)-Sb(2)S(3) was measured at 1064 nm with laser pulses of 15 ps, using a single-beam nonlinear image technique in presence of a phase object. The films were prepared from bulk glasses by RF-sputtering. A large value of n(2) = 3 x 10-(15) m(2)/W, which is three orders of magnitude larger than for CS(2), was determined. The result shows the strong potential of antimony-sulfide glass films for integrated nonlinear optics. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Temperature investigation of infrared-to-visible frequency upconversion in erbium-doped tellurite glasses excited by CW laser radiation at 1540 nm and under cryogenic temperatures is reported. Intense upconversion emission signals around 530, 550 and 660 nm corresponding to the H-2(11/2), S-4(3/2), and F-4(9/2) transitions to the I-4(15/2) ground state were generated and studied as a function of the laser intensity and temperature. The upconversion excitation mechanism of the Er3+ ions emitting energy levels was accomplished via stepwise multiphoton absorption. The green upconversion luminescence exhibited a fivefold intensity enhancement when the temperature of the sample was varied in the range between 5 and 300 K. A maximum green upconversion intensity was attained around 120 K and a steady decreasing behavior for higher temperatures up to 300 K was observed. A model based upon conventional rate equations was used to model the observed temperature evolution of the upconversion luminescence. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this paper we investigate the energy transfer processes in TM3+/Er3+ doped telluride glass pumped at the commercial diode laser pump wavelength similar to 800 nm. Tailoring the rare-earths content in the glass matrix, seven main energy transfer channels within the doping range considered were identified, A 6-fold enhancement of the Er3+ visible frequency upconversion fluorescence at similar to 660 nm is observed due to the inclusion of Tm3+ ions. This is evidence of the relevant contribution of the route Er-1(I-4(11/2)) + Er-2(I-4(13/2)) -> Er-1(I-4(15/2)) + Er-2(F-4(9/2)) to the process. Energy migration among pumped I-4(9/2) level reducing the efficiency of the upconversion emission rate (H-3(11/2), S-4(3/2), and F-4(9/2)) is observed for Er3+ above 1.5 wt%. The rate equations regarding the observed energy transfer routes are determined and a qualitative analysis of the observed processes is reported. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Background and objectives: To assess the microhardness of dentin subsurface after Er:yttrium-aluminum-garnet (YAG) and Nd:YAG laser irradiation. Study design/materials and methods: Twenty-four bovine incisors, without pulp, were used. The vestibular surface was worn out until the dentin was reached and divided in mesial and distal regions. The samples were divided into two groups: GI-distal, irradiated by Er: YAG laser, and GII-distal, irradiated by Nd: YAG laser. The mesial area was protected so as to not receive the laser irradiation. The measurements were made on Vickers digital microhardmeter. Results: For GI-there was no significant statistical difference, Cl(-4.59 to 0.78), between the values of irradiated (55.61 +/- 4.38) and unirradiated (57.51 +/- 4.00) areas. For GII-the values were higher for the irradiated (62.21 +/- 6.48) compared to the unirradiated (57.82 +/- 5.42) area, CI(1.65 +/- to 7.13). Conclusions: There was an increase of dentin microhardness when the Nd: YAG was used, but the Er: YAG did not cause significant alterations in dentin microhardness. (c) 2007 Laser Institute of America.
Resumo:
Twenty-five new laser lines have been obtained is the wavelength region from 155 to 830 mu m by optically pumping the CD2Cl2 (deuterated dichloromethane) molecule with a CW CO3 laser having a tunability range of 300 MHz. The wavelength, polarization relative to that of CO2 pumping radiation, and offset relative to the CO2 center frequency were determined for all of the new lines and some other already known laser emissions. For all of them we give also the relative intensity and the optimum pressure of operation.
Resumo:
Sodium phosphoniobate glasses with the composition (mol%) 75NaPO(3)-25Nb(2)O(5) and containing 2 mol% Yb3+ and x mol% Er3+ (0.01 <= x <= 2) were prepared using the conventional melting/casting process. Er3+ emission at 1.5 mu m and infrared-to-visible upconversion emission, upon excitation at 976 nm, are evaluated as a function of the Er3+ concentration. For the lowest Er3+ content, 1.5 mu m emission quantum efficiency was 90%. Increasing the Er3+ concentration up to 2 mol%, the emission quantum efficiency was observed to decrease to 37% due to concentration quenching. The green and red upconversion emission intensity ratio was studied as a function of Yb3+ co-doping and the Er3+-Er3+ energy transfer processes. (c) 2006 Elsevier B.V. All rights reserved.