53 resultados para International Classification of Functioning
Resumo:
Classification and standardization of the sawn wood is a usual activity, developed by countries that come as great consumers of this material. Brazil does not practice the classification of sawn wood. This work had the main objective of evaluating the sensibility of most common non-destructive tests in the classification of dimension lumber from fast grown Eucalyptus plantation. Wood was obtained from genetic material cultivated at Minas Gerais State, Brazil. 296 beams of structural dimensions (6 cm × 12 cm × 280 cm) from 10 different clones of Eucalyptus were sampled. Beams were non-destructively (stress wave, ultrasound and transverse vibration) and destructively (static bending and compression parallel to grain) tested. Non-destructive results showed sensibility in the classification of structural dimension lumber, being possible to establish wave velocity intervals that attend to the main strength classes reported by Wooden Structures Brazilian Code.
Resumo:
The importance of thrombosis and anticoagulation in clinical practice is rooted firmly in several fundamental constructs that can be applied both broadly and globally. Awareness and the appropriate use of anticoagulant therapy remain the keys to prevention and treatment. However, to assure maximal efficacy and safety, the clinician must, according to the available evidence, choose the right drug, at the right dose, for the right patient, under the right indication, and for the right duration of time. The first International Symposium of Thrombosis and Anticoagulation in Internal Medicine was a scientific program developed by clinicians for clinicians. The primary objective of the meeting was to educate, motivate and inspire internists, cardiologists and hematologists by convening national and international visionaries, thought-leaders and dedicated clinician-scientists in Sao Paulo, Brazil. This article is a focused summary of the symposium proceedings. © Springer Science+Business Media, LLC 2009.
Resumo:
Most of the tasks in genome annotation can be at least partially automated. Since this annotation is time-consuming, facilitating some parts of the process - thus freeing the specialist to carry out more valuable tasks - has been the motivation of many tools and annotation environments. In particular, annotation of protein function can benefit from knowledge about enzymatic processes. The use of sequence homology alone is not a good approach to derive this knowledge when there are only a few homologues of the sequence to be annotated. The alternative is to use motifs. This paper uses a symbolic machine learning approach to derive rules for the classification of enzymes according to the Enzyme Commission (EC). Our results show that, for the top class, the average global classification error is 3.13%. Our technique also produces a set of rules relating structural to functional information, which is important to understand the protein tridimensional structure and determine its biological function. © 2009 Springer Berlin Heidelberg.
Resumo:
This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.
Resumo:
After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects - as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics. © 2012 Elsevier B.V.
Resumo:
The water column overlying the submerged aquatic vegetation (SAV) canopy presents difficulties when using remote sensing images for mapping such vegetation. Inherent and apparent water optical properties and its optically active components, which are commonly present in natural waters, in addition to the water column height over the canopy, and plant characteristics are some of the factors that affect the signal from SAV mainly due to its strong energy absorption in the near-infrared. By considering these interferences, a hypothesis was developed that the vegetation signal is better conserved and less absorbed by the water column in certain intervals of the visible region of the spectrum; as a consequence, it is possible to distinguish the SAV signal. To distinguish the signal from SAV, two types of classification approaches were selected. Both of these methods consider the hemispherical-conical reflectance factor (HCRF) spectrum shape, although one type was supervised and the other one was not. The first method adopts cluster analysis and uses the parameters of the band (absorption, asymmetry, height and width) obtained by continuum removal as the input of the classification. The spectral angle mapper (SAM) was adopted as the supervised classification approach. Both approaches tested different wavelength intervals in the visible and near-infrared spectra. It was demonstrated that the 585 to 685-nm interval, corresponding to the green, yellow and red wavelength bands, offered the best results in both classification approaches. However, SAM classification showed better results relative to cluster analysis and correctly separated all spectral curves with or without SAV. Based on this research, it can be concluded that it is possible to discriminate areas with and without SAV using remote sensing. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We consider smooth finitely C 0-K-determined map germs f: (ℝn, 0) → (ℝp, 0) and we look at the classification under C 0-K-equivalence. The main tool is the homotopy type of the link, which is obtained by intersecting the image of f with a small enough sphere centered at the origin. When f -1(0) = {0}, the link is a smooth map between spheres and f is C 0-K-equivalent to the cone of its link. When f -1(0) ≠ {0}, we consider a link diagram, which contains some extra information, but again f is C 0-K-equivalent to the generalized cone. As a consequence, we deduce some known results due to Nishimura (for n = p) or the first named author (for n < p). We also prove some new results of the same nature. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis. © 2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a Computer Aided Diagnosis (CAD) system that automatically classifies microcalcifications detected on digital mammograms into one of the five types proposed by Michele Le Gal, a classification scheme that allows radiologists to determine whether a breast tumor is malignant or not without the need for surgeries. The developed system uses a combination of wavelets and Artificial Neural Networks (ANN) and is executed on an Altera DE2-115 Development Kit, a kit containing a Field-Programmable Gate Array (FPGA) that allows the system to be smaller, cheaper and more energy efficient. Results have shown that the system was able to correctly classify 96.67% of test samples, which can be used as a second opinion by radiologists in breast cancer early diagnosis. (C) 2013 The Authors. Published by Elsevier B.V.