126 resultados para Intercellular osmoregulation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The ultrastructure of ovarian sperm storage of Helicolenus dactylopterus dactylopterus is described, before and after the spawning period. The spermatozoa remain inside cryptal structures that are situated in the interlamellar gaps and are connected to the ovarian lumen by a duct. This complex forms a highly specialised structure. During the long storage period, crypts are richly vascularised. Their surrounding simple epithelia have intercellular junctions that may serve to protect the spermatozoa from the female immune system. At the moment during which insemination of mature oocytes occurs, the sperm may be expelled from cryptal structures by means of a spasmodic contraction. During the post spawning period, residual spermatozoa that remain in the crypts are eliminated by cryptal phagocytes. At the end of the process the crypts contain only an amorphous material.
Resumo:
The Hoplias malabaricus primary spermatogonium shows a large nucleus, central nucleolus, and low electron-dense cytoplasm containing nuages. In cysts, they undergo several mitotic divisions with incomplete cytokinesis, giving rise to secondary spermatogonia. These are smaller than the primary spermatogonia and their nuclei have one or two eccentric nucleoli. Spermatocytes I can be identified by the presence of synaptonemal complexes. Spermatocytes II are smaller than spermatocytes 1, displaying roughly compacted chromatin. All these cell types remain interconnected by thick-walled intercellular bridges, which have membranous reinforcements during mitosis and meiosis. These cell types show a well-developed endomembranous system, one of the centrioles anchored to the plasma membrane and small nuages. Their mitochondria are large and circular, with few cristae. In the last generations of spermatogonia, the mitochondria are smaller, elongate and have more cristae. In the spermatocytes, the mitochondria are small and round. Similarities found in relation to germ cells of other teleosts are discussed.
Resumo:
The follicular epithelium and theca of oocytes in Serrasalmus spilopleura differentiates during the initial primary growth phase. The follicular cells are squamous and the thecal cells are disposed in two layers. During the secondary growth phase, follicular cells become cuboidal, acquire characteristics typical of protein- or glycoprotein-producing cells, and show dilated intercellular spaces. Formation of the egg envelope in S. spilopleura begins in the previtellogenic oocytes as a layer of amorphous electron-dense material is laid down on the oolemma. During vitellogenesis, another layer of electron-dense material appears beneath the first layer. Also during this phase, a layer of amorphous, less electron-dense material is formed adjacent to the follicular epithelium. The secondary egg envelope appears at the postvitellogenic phase and is composed of a filamentous and undulant material. The morphology of the egg envelopes in S. spilopleura reflects not only its oviparous nature but also the fact that its eggs are adhesive.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Dufour's gland is found closely associated with the sting apparatus of all female hymenopterans, playing multiple roles among bees. In some species of Bombus the gland may be involved in production of nestmate recognition pheromones, but in B. terrestris its function is not certain yet. The morphology of the :Dufour's gland of B. terrestris queens and the ultrastructural features of its cells were studied in different ages and behavioural stages using routine transmission electron microscopy. Measurements of the length and the diameter of the gland in the same conditions were also made. The Dufour's gland of the queen increases significantly in size (both in length and in diameter) with age and reproductive activity the ultrastructural features of the gland show electrondense material that comes from the haemolymph. This material is also present in the intercellular spaces, and is conducted to the subcuticular space, to be released directly into the glandular lumen. Hence at least part of the secretion is probably taken up directly from the haemolymph. The ultrastructural features indicate a more active phase of the gland corresponding to the period of egg-laying of the queen, and a decrease in activity when the queen is in hibernation as well as after the competition point. In conclusion, the gland is probably involved in reproduction, more specifically, in the marking off eggs.
Resumo:
Insect oocytes are surrounded by the follicular epithelium which is simple and cuboidal, wih the mainly functions of: synthesis of vitellin membrane and chorion and synthesis and transport of hemolymph products (proteins). In Pachycondyla (Neoponera) villosa ants workers aged less than 10 days do not present the formation of ovarian follicles (oocytes, nurse cells and follicular cells) indicating that vitellogenesis starts at approximately 10 days of age. Studies of participation of the follicular epithelium in Pachycondyla (Neoponera) villosa showed that in stage I oocytes the epithelium does not present the opening of intercellular spaces. In stage II these spaces begin to be observed together with separation of the follicular epithelium from the oocyte surface. In stage III two types of material were observed in the intercellular spaces: electrodense material in the basal region and compacted material in apical one as well as follicular epithelium/oocytes interface suggesting that the extraovarian material that reach oocytes undergoes some type of modification during passage through the intercellular spaces. The follicular epithelium spaces in queen are bigger than in workers oocytes.
Resumo:
Mesobolivar luteus (Keyserling 1891) and Micropholcus fauroli (Simon 1887) specimens were collected in Ubatuba and Rio Claro, both in the state of São Paulo, Brazil. Mesabolivar luteus showed 2n (male) = 15 = 14 + X and 2n (9) = 16 = 14 + XX in mitotic metaphases and 711 + X in diplotenic cells. During late prophage 1, all bivalents presented a ring shape, evidencing two chiasmata per bivalent. In this species, some diplotenic cells appear in pairs, maybe due to specific characteristics of the intercellular bridges. The metaphases 11 showed n = 7 or n = 8 = 7 + X chromosomes. Micropholcus fauroti evidenced 2n (male) = 17 = 16 + X in spermatogonial metaphases and 8II+X in diplotenic cells, with only one chiasma per bivalent, contrasting with M. luteus. In both species, all chromosomes were metacentrics. The sexual chromosome X was the largest element and appeared as a univalent during meiosis I. These are the first cytogenetical data for the genera Mesabolivar and Micropholcus. Additionally, M. luteus is the first chromosomally analyzed species of the New World clade and the observed diploid number for M. fauroti had not yet been recorded in Pholcidae.
Resumo:
The technique of osmium imidazol for the ultrastructural detection of lipids in the secretory cells of the venom gland of 14-days old worker bees of Apis mellifera L. demonstrated the presence of these components at various sites of the gland. These lipids were found mainly associated to the external region of the basal lamina and the microvilli, in the intercellular spaces, in the cuticle of the collecting canaliculi and in the secretion contained in the glandular lumen. Therefore, in addition to revealing the presence of lipids in the secretion, this technique also allowed us to attribute an exogenous origin to the lipids in the secretion; they are taken up from the haemolymph.
Resumo:
Cytochemical studies were carried out to establish lipid distribution in the salivary glands of larvae and adult bees, using the imidazole buffer technique. In the duct cells of the larval salivary gland, the reaction was positive in the epicuticle and negative in the glandular lumen. The absence of smooth endoplasmic reticulum and the presence of lipids in the intercellular space suggest that lipids absorbed from the haemolymph could be used in the constitution of the epicuticle, after having been conveyed through the epithelium. In adult workers (new-emerged, nurse and forager workers), the head salivary glands presented a positive reaction in the secretion in glandular lumen, identifying its lipidic nature.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A glândula de Dufour é uma glândula acessória do aparelho reprodutivo feminino das abelhas. Nas abelhas neotropicais sem ferrão, tem sido pouca estudada sob todos os aspectos: morfológico, ontogenético e bioquímico. Na tentativa de colaborar com o conhecimento dessa glândula em abelhas sem ferrão, foi realizado um estudo da sua ocorrência, morfologia e desenvolvimento em Scaptotrigona postica Latreille. Os resultados mostraram que ela se encontra ausente nas operárias, como ocorre em muitas outras espécies desse grupo. Nas rainhas, as células glandulares parecem mais ativas nas virgens, possuindo uma desenvolvida rede de retículo endoplasmático liso tubular, grânulos de secreção e polirribossomos dispersos no citoplasma, além de apresentarem núcleos maiores do que os das células glandulares das fisogástricas. Nas rainhas fisogástricas há dois tipos de células glandulares, ambas aparentemente inativas sinteticamente. As glândulas das rainhas fisogástricas são claramente capazes de captar substâncias da hemolinfa, provavelmente lipídios, que não penetram nas células, mas passam pelos espaços intercelulares e, através da cutícula, chegam diretamente à luz da glândula. A bem desenvolvida dupla camada de lâmina basal ao redor da glândula pode atuar no processo de captação de substâncias da hemolinfa. A secreção, e conseqüentemente sua função, pode ser diferente nas duas classes de rainhas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)