175 resultados para Inhibitory activity
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tellurium tetrachloride adds to alkynes via two pathways: a concerted syn addition, that yields Z-tri- and tetra-substituted alkenes or by an anti addition that yields E-alkenes. The mechanistic aspects of these divergent pathways have been reevaluated at the light of crystallographic data. The molecules, of the title compound, in the crystal, are associated in a helical fashion with a Te...Te pitch of 6.3492(6) angstrom. As it exhibits inhibitory activity for cathepsin B and in order to gain more insight of the inhibition mechanism, a docking study was undertaken providing insight on why organic telluranes are more efficient inhibitors than inorganic ones as AS-101. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The antimicrobial activity of a commercial probiotic culture, Lactobacillus acidophilus (La5), was tested against two foodborne pathogens, Escherichia coli and Staphylococcus aureus. The antagonistic effect of the probiotic culture in vitro was performed by applying both Multilayer Agar Plate and Agar Well Diffusion methods. The results indicated that the inhibitory substance present on 72 hours culture broth supernatant was extracellular and diffusible. The incubation period of the lactic acid bacteria on MRS Broth, at 3 7 degrees C in aerobic conditions, for the highest lactic acid production (1,08 g/%) was 72 hours, which gave a minimum pH value of the supernatant (3,90) and the best inhibition results by the Well Diffusion Agar Assay, showing inhibition zone diameters of 14,75mm and 15,0mm for E. coli and S. aureus, respectively. The inhibitor compound was not sensitive to proteolytic enzyme and freezing, but was totally inactivated when the supernatant was neutralized with NaOH 1 N solution. The results suggest that the inhibitory activity was due to the lactic acid concentration and the low pH of the probiotic culture broth.
Resumo:
Bioactivity-directed fractionation of the MeCOEt extract of Trichilia emetica (Meliaceae) resulted in the isolation of the limonoids nymania 1 (1), drageana 4 (3), trichilin A (4), rohituka 3 (5),and Tr-B (7) and the novel seco-A protolimonoid 8. of these, nymania 1 and Tr-B showed selective inhibitory activity toward DNA repair-deficient yeast mutants. The isolation, structure elucidation, C-13 NMR spectral assignments, and biological activities of:these compounds are reported.
Resumo:
The effect of colonisation of the alimentary tract of newly hatched chicks by different Salmonella serotypes on the establishment in the gut by other Salmonella strains inoculated afterwards was assessed. Although profound inhibition of colonisation had been found previously to be genus-specific, considerable variation was found within the Salmonella genus. Some strains were found to be much more inhibitory than others and some were more easily inhibited than were others. There was not an absolute relationship between inhibitory activity and colonisation ability. No relationship was seen between inhibition and serotype or phage types within serotypes. There was no correlation between in vivo inhibition and the extent of inhibition that occurred in early stationary phase cultures in rich, undefined broth cultures.
Resumo:
In vitro inhibition of the of spores germination of Alternaria solani by iprodione, chlorothalonil, and anilazine at different dosages was studied. The highest concentration of active ingredient studied for each fungicide was equivalent to that recommended for the control of the early blight, under field conditions: 0.75; 1.80 and 1.44 g, respectively, of iprodione, chlorothalonil and anilazine per litre of water. A series of two-fold diluitions of each original concentration was studied in additional nine experiments. Eah of the three fungicides showed total in vitro spore inhibition at the highest rate, at six hours of incubation. At nine hours, only analazine mantained its full inhibition activity. The inhibition activity of iprodione decreased suddenly after 1/2 dilution, so that at the 1/8 dilution a total loss of inhibitory activity was observed. Chlorothalonil showed a progressive and slighter decrease of its activity as the dilution rate increased.Analizine showed a high inhibitory activity at higher dilutions, without any loss up to 1/128 dilution. Even at 1/512 dilution, its activity was so high that only 20% of spore germination was observed at six or nine hours of incubation.
Resumo:
Dentin sialoprotein (DSP) and dentin phosphoprotein (DPP), the major dentin proteins, have been shown to induce neutrophil migration through release of IL-1beta, TNF-alpha, MIP-2, and KC. However, the sources of these mediators were not determined. Here, the roles of macrophages and mast cells (MC) in dentin-induced neutrophil accumulation were investigated. Peritoneal MC depletion or the enhancement of macrophage population increased DSP- and DPP-induced neutrophil extravasation. Moreover, supernatants from DSP- and DPP-stimulated macrophages caused neutrophil migration. The release of neutrophil chemotactic factor by macrophages was inhibited by dexamethasone or the supernatant of DSP- treated MC. Consistently, dexamethasone and the MC supernatant inhibited the production of IL-1beta, TNF-alpha, and MIP-2 by macrophages. This inhibitory activity of the DSP- stimulated MC was neutralized by anti-IL-4 and anti-IL-10 antibodies. These results indicate that dentin induces the release of the neutrophil chemotactic substance(s) by macrophages, which are down-modulated by MC-derived IL-4 and IL-10.
Resumo:
A novel antimicrobial peptide, eumenitin, was isolated from the venom of the solitary eumenine wasp Eumenes rubronotatus. The sequence of eumenitin, Leu-Asn-Leu-Lys-Gly-Ile-Phe-Lys-Lys-Val-Ala-Ser-Leu-Leu-Thr, was mostly analyzed by mass spectrometry together with Edman degradation, and corroborated by solid-phase synthesis. This peptide has characteristic features of cationic linear a-helical antimicrobial peptides, and therefore, can be predicted to adopt an amphipathic a-helix secondary structure. In fact, the CD spectra of eumenitin in the presence of TFE or SDS showed a high content of alpha-helical conformation. Eumenitin exhibited inhibitory activity against both Gram-positive and Gram-negative bacteria, and moderately stimulated degranulation from the rat peritoneal mast cells and the RBL-2H3 cells, but showed no hemolytic activity against human erythrocytes. This antimicrobial peptide in the eumenine wasp venom may play a role in preventing potential infection by microorganisms during prey consumption by their larvae. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the search for new therapeutic tools against tuberculosis two novel iron complexes, [Fe(L-H)3], with 3-aminoquinoxaline-2-carbonitrile N(1),N(4)-dioxide derivatives (L) as ligands, were synthesized, characterized by a combination of techniques, and in vitro evaluated. Results were compared with those previously reported for two analogous iron complexes of other ligands of the same family of quinoxaline derivatives. In addition, the complexes were studied by cyclic voltammetry and EPR spectroscopy. Cyclic voltammograms of the iron compounds showed several cathodic processes which were attributed to the reduction of the metal center (Fe(III)/Fe(II)) and the coordinated ligand. EPR signals were characteristic of magnetically isolated high-spin Fe(III) in a rhombic environment and arise from transitions between m(s) = +/- 1/2 (geff-9) or m(s) = +/- 3/2 (g(eff)similar to 4.3) states. Mossbauer experiments showed hyperfine parameters that are typical of high-spin Fe(III) ions in a not too distorted environment. The novel complexes showed in vitro growth inhibitory activity on Mycobacterium tuberculosis H(37)Rv (ATCC 27294), together with very low unspecific cytotoxicity on eukaryotic cells (cultured murine cell line J774). Both complexes showed higher inhibitory effects on M. tuberculosis than the "second-line" therapeutic drugs. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present investigation was to study the distribution of T-cell subsets in peripheral blood defined by monoclonal antibodies and by the lymphocyte proliferative response to phytohemagglutinin (PHA) in 30 children with febrile seizures and in 14 age-matched control subjects. Frequent respiratory, urinary and dermatologic infections were observed in 22 patients. The immunologic parameters showed that 64% of the patients presented an increased number of CD8+ cells and a low helper/suppressor ratio was observed in 60% of the patients. In addition, the proliferative response of lymphocytes to PHA was impaired in the patients It was observed the presence of inhibitory activity on lymphocyte function in the plasma of 33% of children with febrile seizures. These results suggest that patients with febrile seizures have an impairment of cellular immunity that may be connected with this epileptic syndrome and explain the infections observed.
Resumo:
Exogenously added IL-10 rapidly inhibited Staphylococcus aureus- or LPS- induced cytokine mRNA expression in human PBMCs and monocytes, with a maximal effect observed when IL-10 was added from 20 h before until 1 h after the addition of the inducers. Nuclear run-on assays revealed that the inhibition of IL-12 p40, IL-12 p35, and TNF-α was at the gene transcriptional level and that the addition of IL-10 to S. aureus- or LPS-treated PBMCs did not affect mRNA stability. The inhibitory activity of IL-10 was abrogated by cycloheximide (CHX), suggesting the involvement of a newly synthesized protein(s). The addition of CHX at 2 h before S. aureus or LPS also inhibited the accumulation of IL-12 p40 mRNA, but did not inhibit IL-12 p35 and TNF-α mRNA. This finding suggests that p40 transcription is regulated through a de novo synthesized protein factor(s), whereas the addition of CHX at 2 h after S. aureus activation caused superinduction of the IL-12 p40, IL-12 p35, and TNF-α genes. These results indicate that in human monocytes, the mechanism(s) of IL-10 suppression of both IL-12 p40 and IL-12 p35 genes is primarily seen at the transcriptional level, and that the induction of the IL-12 p40 and p35 genes have different requirements for de novo protein synthesis.