38 resultados para Hypertensive heart
Resumo:
Background. The literature did not evidence yet with which age spontaneously hypertensive rats (SHR) start to present baroreflex reduction. We endeavored to evaluate the baroreflex function in eight-week-old SHR. Methods. Male Wistar Kyoto (WKY) normotensive rats and SHR aged eight weeks were studied. Baroreflex was calculated as the variation of heart rate (HR) divided by the mean arterial pressure (MAP) variation (HR/MAP) tested with a depressor dose of sodium nitroprusside (SNP, 50 g/kg) and with a pressor dose of phenylephrine (PHE, 8 g/kg) in the right femoral venous approach through an inserted cannula in the animals. Significant differences for p < 0.05. Results. Baseline MAP (p < 0.0001) and HR (p = 0.0028) was higher in SHR. Bradycardic peak was attenuated in SHR (p < 0.0001), baroreflex gain tested with PHE was also reduced in the SHR group (p = 0.0012). PHE-induced increase in MAP was increased in WKY compared to SHR (p = 0.039). Bradycardic reflex responses to intravenous PHE was decreased in SHR (p < 0.0001). Conclusion. Eight weeks old SHR already presents impairment of the parasympathetic component of baroreflex. © 2010 Cisternas et al; licensee BioMed Central Ltd.
Resumo:
High systolic blood pressure caused by endothelial dysfunction is a comorbidity of metabolic syndrome that is mediated by local inflammatory signals. Insulin-induced vasorelaxation due to endothelial nitric oxide synthase (eNOS) activation is highly dependent on the activation of the upstream insulin-stimulated serine/threonine kinase (AKT) and is severely impaired in obese, hypertensive rodents and humans. Neutralisation of circulating tumor necrosis factor-α (TNFα) with infliximab improves glucose homeostasis, but the consequences of this pharmacological strategy on systolic blood pressure and eNOS activation are unknown. To address this issue, we assessed the temporal changes in the systolic pressure of spontaneously hypertensive rats (SHR) treated with infliximab. We also assessed the activation of critical proteins that mediate insulin activity and TNFα-mediated insulin resistance in the aorta and cardiac left ventricle. Our data demonstrate that infliximab prevents the upregulation of both systolic pressure and left ventricle hypertrophy in SHR. These effects paralleled an increase in AKT/eNOS phosphorylation and a reduction in the phosphorylation of inhibitor of nuclear factor-κB (Iκβ) and c-Jun N-terminal kinase (JNK) in the aorta. Overall, our study revealed the cardiovascular benefits of infliximab in SHR. In addition, the present findings further suggested that the reduction of systolic pressure and left ventricle hypertrophy by infliximab are secondary effects to the reduction of endothelial inflammation and the recovery of AKT/eNOS pathway activation. © 2012 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Epinephrine is considered the gold standard vasoconstrictor for hypertensive patients, but few studies report felypressin’s effects. The present study aimed to analyze and compare the effects of these two vasoconstrictors, injected by the intravenous route, on the arterial pressure of normotensive, hypertensive and atenolol-treated hypertensive rats. Method The hypertension model was one-kidney-one-clip (1K1C): the main left renal artery was partially constricted and the right kidney was surgically removed in 45-day-old male Wistar rats. 1K1C hypertensive rats received atenolol (90 mg/kg/day) by gavage for 2 weeks. 28–35 days after hypertension induction, a catheter was inserted into the left carotid artery to record direct blood pressure values. The following parameters were recorded: minimal hypotensive response, maximal hypertensive response, response duration and heart rate. Results Epinephrine, but not felypressin, exerted an important hypotensive action; non-treated hypertensive rats showed more pronounced vasodilation. Treated and non-treated rats showed hypertensive responses of the same magnitudes in all groups; 1K1C atenolol rats showed reduced hypertensive responses to both vasoconstrictors. Felypressin’s response duration was longer than that of epinephrine in all groups. Epinephrine increased heart rate while felypressin reduced this parameter only in the normotensive group. Conclusions Our results suggest that felypressin has equipotent pressure responses when compared with epinephrine, showing a greater extent of action. Atenolol’s reduction of hypertensive effects surprisingly suggests that atenolol β-blockade may also be important for felypressin’s cardiovascular effect, as is widely known for epinephrine. Our data suggest that felypressin is safe for hypertensive subjects, in particular those receiving atenolol.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aging spontaneously hypertensive rat (SHR) is a model in which the transition from chronic stable left ventricular hypertrophy to overt heart failure can be observed. Although the mechanisms for impaired function in hypertrophied and failing cardiac muscle from the SHR have been studied, none accounts fully for the myocardial contractile abnormalities. The cardiac cytoskeleton has been implicated as a possible cause for myocardial dysfunction. If an increase in microtubules contributes to dysfunction, then myocardial microtubule disruption by colchicine should promote an improvement in cardiac performance. We studied the active and passive properties of isolated left ventricular papillary muscles from 18- to 24-month-old SHR with evidence of heart failure (SHR-F, n=6), age-matched SHR without heart failure (SHR-NF, n=6), and age-matched normotensive Wistar-Kyoto rats (WKY, n=5). Mechanical parameters were analyzed before and up to 90 minutes after the addition of colchicine (10(-5), 10(-4), and 10(-3) mol/L). In the baseline state, active tension (AT) developed by papillary muscles from the WKY group was greater than for SHR-NF and SHR-F groups (WKY 5.69+/-1.47 g/mm2 [mean+/-SD], SHR-NF 3.41+/-1.05, SHR-F 2.87+/-0.26; SHR-NF and SHR-F P<0.05 versus WKY rats). The passive stiffness was greater in SHR-F than in the WKY and SHR-NF groups (central segment exponential stiffness constant, Kcs: SHR-F 70+/-25, SHR-NF 44+/-17, WKY 41+/-13 [mean+/-SD]; SHR-F P<0.05 versus SHR-NF and WKY rats). AT did not improve after 10, 20, and 30 minutes of exposure to colchicine (10(-5), 10(-4), and 10(-3) mol/L) in any group. In the SHR-F group, AT and passive stiffness did not change after 30 to 90 minutes of colchicine exposure (10(-4) mol/L). In summary, the data in this study fail to demonstrate improvement of intrinsic muscle function in SHR with heart failure after colchicine. Thus, in the SHR there is no evidence that colchicine-induced cardiac microtubular depolymerization affects the active or passive properties of hypertrophied or failing left ventricular myocardium.
Efficiency and costless of a long-term physical exercise program to nom-medicated hypertensive males
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)