105 resultados para Hurricane Wilma
Resumo:
It is well established that sibutramine produces weight loss and is used frequently in women of childbearing age. However, the potential adverse consequences attributed to sibutramine use by women who may become pregnant is not known. It was thus of interest to determine the effects of sibutramine on the reproductive performance of pregnant rats. Overweight as well as non-overweight female Wistar rats were treated with sibutramine (6 mg/kg) orally, daily for 15 d and then mated with normal male rats. Pregnancy was confirmed and treatment continued with sibutramine until d 14 of pregnancy. on d 20 of pregnancy all rats were anesthetized for determination of various maternal and fetal parameters. There was a significant maternal weight reduction at the end of pregnancy in the non-overweight drug-treated group compared to the control (non-overweight, no drug). Sibutramine alone and overweight condition alone produced a significant increase in postimplantation loss and placental index. In the overweight with or without sibutramine groups a significant decrease in fetal weight was noted. Data suggest that sibutramine alone or the condition of excess weight in the absence of drugs produced impaired reproductive performance. However, treatment of overweight rats with sibutramine did not further exacerbate fetal loss compared to sibutramine alone or the effects noted with excess weight alone.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Context: Jacaranda decurrens subsp. symmetrifoliolata Farias & Proenca (Bignoniaceae) is a species widely used for their medicinal properties. At least to our known, no study has been conducted concerning its toxicological profile after gestational and lactational exposure.Objective: The present study was carried out to evaluate the effects of J. decurrens on development of the reproductive system in male rats.Materials and methods: Pregnant rats were treated daily (gavage) with 250 or 500 mg/kg/day of aqueous extract of J. decurrens or vehicle, from day 12 of pregnancy to day 21 of lactation.Results and Discussion: Both doses of J. decurrens significantly anticipated (p < 0.05) the age of testicular descent to the scrotum, a parameter indicative of puberty initiation. Furthermore, at puberty, there was a significant reduction (p < 0.05) in testicular and epididymis weights in the offspring exposed to the higher dose of extract, without effect on sperm production and the histology of reproductive organs. on the other hand, at adulthood, the reproductive parameters analyzed did not differ among groups.Conclusions: J. decurrens, in this experimental model, interfered with the initial development of the reproductive system, but without lasting effects on sperm production in adulthood.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The potential adverse reproductive effects, with emphasis on the epididymis, of in utero and lactational exposure to 100 mg/kg/d di-n-butyl phthalate (DBP) in adult male rat offspring were investigated. The fetal testis histopathology was also determined. The selected endpoints included reproductive organ weights, sperm motility and morphology, sperm epididymal transit time, sperm quantity in the testis and epididymis, hormonal status, fetal testis and epididymal histopathology and stereology, and androgen receptor (AR), aquaporin 9 (AQP9), and Ki-67 immunoreactivities. Pregnant females were divided into two groups: control (C) and treated (T). The treated females received DBP (100 mg/kg/d, by gavage) from gestation day (GD) 12 to postnatal day (PND) 21, while control dams received the vehicle. Some pregnant dams were killed by decapitation on GD20, and testes from male fetuses were collected for histopathogy. Male rats from other dams were killed at PND 90. Fetal testes from treated group showed Leydig-cell clusters, presence of multinucleated germinative cells, and increase of the interstitial component. Testosterone levels and reproductive organ weights were similar between the treated and control adult groups. DBP treatment did not markedly affect relative proportions of epithelial, stromal, or luminal compartments in the epididymis; sperm counts in the testis and epididymis; sperm transit time; or sperm morphology and motility in adult rats. The AR and AQP9 immunoreactivities and proliferation index were similar for the two groups. These results showed that fetal testes were affected by DBP as evidenced by testicular histopathologic alterations, but reproductive parameters and epididymal structure/function were not significantly altered in the adult animals exposed to 100 mg/kg DBP in utero and during lactation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The epididymal sperm transit time seems to have an important role in the process of sperm maturation, and it seems that alterations to the transit can harm the process. The aim of the present work was to evaluate the influence of altered sperm transit time through the epididymis on sperm parameters and fertility of rats, as well as the role of testosterone in the alterations. Sprague-Dawley adult male rats were randomly assigned to four different groups and were treated for 12 days: (i) 10 mu g/rat/day DES, to accelerate the transit; (ii) 6.25 mg/kg/day guanethidine sulphate, to delay the transit; (iii) same treatment as group 1, plus androgen supplementation; (iv) control animals received the vehicles. Guanethidine treatment delayed the sperm transit time through the epididymal cauda, provoking increased sperm reserves in this region. Animals exposed to DES showed an acceleration of sperm transit time in the epididymis, and consequently decreased sperm density in both epididymal regions, the caput-corpus and cauda, and diminished sperm motility. In both cases sperm production was not altered. Testosterone supplementation was able to restore the transit time to values close to normality, as they were higher than in the control rats. The same occurred in relation to sperm motility. Rats exposed to DES presented lower fertility after in utero artificial insemination using sperm collected from the proximal cauda epididymis. Therefore, it was concluded that the acceleration of rat sperm transit time appeared to harm normal sperm maturation, thus decreasing sperm quality and fertility capacity, in an androgen-dependent way.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to determine the consequent reproductive developmental and immunotoxic effects due to exposure to fenvalerate during pregnancy and lactation in male offspring of maternal-treated rats. Pregnant rats were treated daily by oral gavage with 40 or 80 mg/kg of fenvalerate or corn oil (vehicle, control), from d 12 of pregnancy to d 21 of lactation. Immune and reproductive developmental effects were assessed in male offspring at postnatal days (PND) 40 (peripuberty), 60 (postpuberty), and 90 (sexual maturity). Treatment with the higher dose (80 mg/kg) resulted in convulsive behavior, hyperexcitability, and mortality in 45% of the dams. Fenvalerate was detected in the fetus due to placental transfer, as well as in pups due to breast-milk ingestion, persisting in male offspring until PND 40 even though pesticide treatment was terminated on PND 20. However, fenvalerate did not produce marked alterations in age of testicular descent to the scrotum and prepucial separation, parameters indicative of puberty initiation. In contrast, at puberty, there was a reduction in testicular weight and sperm production in male offspring of maternal-treated rats. At adulthood, the sperm counts and fertility did not differ between control and treated groups. Testosterone levels were not changed at any time during reproductive development. Similarly, no apparent exposure-related effects were detected in the histological structures of the lymphohematopoietic system. Data indicate that fenvalerate, in this experimental model, interfered with initial development of the male reproductive system, but that these effects on sperm production or fertility did not persist into adulthood. There was no apparent evidence that fenvalerate altered testosterone levels or produced a disruption in male endocrine functions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)