56 resultados para Hot machining


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper consists in presenting a method of simulating the warpage in 7xxx series aluminium alloy plates. To perform this simulation finite element software MSC.Patran and MSC.Marc were used. Another result of this analysis will be the influence on material residual stresses induced on the raw material during the rolling process upon the warpage of primary aeronautic parts, fabricated through machining (milling) at Embraer. The method used to determinate the aluminium plate residual stress was Layer Removal Test. The numerical algorithm Modified Flavenot Method was used to convert layer removal and beam deflection in stress level. With such information about the level and profile of residual stresses become possible, during the step that anticipate the manufacturing to incorporate these values in the finite-element approach for modelling warpage parts. Based on that warpage parameter surely the products are manufactured with low relative vulnerability propitiating competitiveness and price. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The α-SiAlON ceramic cutting tool insert is developed. Silicon nitride and additives powders are pressed and sintered in the form of cutting tool inserts at temperature of 1900 °C. The physics and mechanical properties of the inserts like green density, weight loss, relative density, hardness and fracture toughness are evaluated. Machining studies are conducted on grey cast iron workpiece to evaluate the performance of α-SiAlON ceramic cutting tool. In the paper the cutting tool used in higher speed showed an improvement in the tribological interaction between the cutting tools and the grey cast iron workpiece resulted in a significant reduction of flank wear and roughness, because of better accommodation and the presence of the graphite in gray cast iron. The above results are discussed in terms of their affect at machining parameters on gray cast iron.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their high hardness and wear resistance Si3N4 based ceramics are one of the most suitable cutting tool materials for machining hardened materials. Therefore, their high degree of brittleness usually leads to inconsistent results and sudden catastrophic failures. Improvement of the functional properties these tools and reduction of the ecological threats may be accomplished by employing the technology of putting down hard coatings on tools in the state-of-the-art PVD processes, mostly by improvement of the tribological contact conditions in the cutting zone and by eliminating the cutting fluids. However in this paper was used a Si3N4 based cutting tool commercial with a layer TiN coating. In this investigation, the performance of TiN coating was assessed on turning used to machine an automotive grade compacted graphite iron. As part of the study were used to characterise the performance of cutting tool, flank wear, temperature and roughness. The results showed that the layer TiN coating failed to dry compacted graphite iron under aggressive machining conditions. However, using the measurement of flank wear technique, the average tool life of was increased by VC=160 m/min.The latter was also observed using a toolmakers microscope and scanning electron microscopy (SEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the investigation of an abrasive process for finishing flat workpieces, based on the combination of important grinding and lapping characteristics. Instead of loose abrasive grains between the workpiece and the lapping plate, a resinoid grinding wheel of hot-pressed silicon carbide is placed on the plate of a device resembling a lapping machine. The resin bond grinding wheel is dressed with a single-point diamond. In addition to keeping the plate flat, dressing also plays the role of interfering in the behavior of the process by varying the overlap factor (Ud). It was found that the studied process simplify the set-up and can be controlled more easily than in lapping, whose is a painstaking process. The surface roughness and flatness deviation proved comparable to those of lapping, or even finer than it, with the additional advantage of a less contaminated workpiece surface with a shiny appearance. The process was also monitored by acoustic emission (AE), which indicates to be a promissing and suitable technique for use in this process. Copyright © 2008 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced ceramic materials constitute a mature technology with a very broad base of current and potential applications and a growing list of material compositions. Within the advanced ceramics category, silicon nitride based ceramics are wear-resistant, corrosion-resistant and lightweight materials, and are superior to many materials with regard to stability in high-temperature environments. Because of this combination the silicon nitride ceramics have an especially high potential to resolve a wide number of machining problems in the industries. Presently the Si3N4 ceramic cutting tool inserts are developed using additives powders that are pressed and sintered in the form of a cutting tool insert at a temperature of 1850 °C using pressureless sintering. The microstructure of the material was observed and analyzed using XRD, SEM, and the mechanical response of this array microstructure was characterized for hardness Vickers and fracture toughness. The results show that Si3N4/20 wt.% (AlN and Y 2O3) gives the best balance between hardness Vickers and fracture toughness. The Si3N4/15 wt.% (AlN and Y 2O3) composition allows the production of a very fine-grained microstructure with low decreasing of the fracture toughness and increased hardness Vickers. These ceramic cutting tools present adequate characteristics for future application on dry machining. © (2010) Trans Tech Publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alternative for grinding of sintered ceramic is the machining on the green state of the ceramic, which presents easy cutting without the introduction of harmful defects to its mechanical resistance. However, after sintering there are invariably distortions caused by the heterogeneous distribution of density gradients, which are located in the most outlying portions of the compacted workpiece. In order to minimize these density gradients, this study examined the influence of different allowance values and their corresponding influence in distortion after sintering alumina specimens with 99.8 % purity by turning operation using cemented carbide tool. Besides distortion, other output variables were analyzed, such as tool wear, cutting force and surface roughness of green and sintered ceramics. Results showed a distortion reduction up to 81.4%. Green machining is beneficial for reducing surface roughness in both green and sintered states. Cutting tool wear has a direct influence on surface roughness and cutting force.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing demand for steels with tighter compositional specifications led the Companhia Siderúrgica Nacional (CSN) to develop more efficient processes. To solve this problem this paper aims to identify the operational variables more impacting in the desulfurization process, specifically in torpedo car, as well as its causes and solutions. Then select and test, with laboratorial and industrial tests, desulfurizing agents based of CaC 2, CaO, CaCO3, and Mg to assess the cost per quantity of product desulfurized. The mixture with best results was not that one with highest content of CaC2. It is believed that this mixture showed better efficiency because of the increased agitation of the bath, produced by the releasing of gas from compound CaCO3 present in this mixture. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports our initial research to obtain SrWO4 microcrystals by the injection of ions into a hot aqueous solution and their photocatalytic (PC) properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The shape and average size of these SrWO 4 microcrystals were observed by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In addition, we have investigated the PC activity of microcrystals for the degradation of rhodamine B (RhB) and rhodamine 6G (Rh6G) dyes. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy confirmed that SrWO4 microcrystals have a scheelite-type tetragonal structure without deleterious phases. FT-Raman spectra exhibited 12 Raman-active modes in a range from 50 to 1000 cm-1. FE-SEM and TEM images suggested that the SrWO4 microcrystals (rice-like - 95%; star-, flower-, and urchin-like - 5%) were formed by means of primary/secondary nucleation events and self-assembly processes. Based on these FE-SEM/TEM images, a crystal growth mechanism was proposed and discussed in details in this work. Finally, a good PC activity was first discovered of the SrWO4 microcrystals for the degradation of RhB after 80 min and Rh6G after 50 min dyes under ultraviolet-light, respectively. © 2012 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was conducted to evaluate the morphologic modifications in tissues of the fruit and seed of the crambe (Crambe abyssinica Hochst. Ex R.E. Fr.) after drying at different temperatures. Fruits with a water content of 0.38 kg water/kg dry matter were harvested and manually homogenized. Drying was accomplished at 35, 45, 60, 75, and 90°C and at 21,9,7,5, and 2% relative humidity, respectively. After drying, the structure of the pericarp and tegument of the seed were evaluated and the embryo was removed from the fruit/seed for morphological analysis (structural and ultrastructural and the histolocalization of reserve substances). Drying at different temperatures did not affect the cellular structure of the tissues composing the pericarp of the fruits, but it disorganized the structure of the seed tegument. The cells of the tegument and cotyledons presented a contraction in their volumes. The lowest contractions in the cellular volumes of both the tegument and cotyledons occurred after drying at 35 and 45°C. The cytoplasm of the cotyledon cells contains oil drops and the protein bodies contain protein granules and starch grains. There were no changes in the cellular walls of the embryos of the fruits dried at different temperatures; however, ungluing of the medium lamella occurred. This damage occurred with greater intensity after drying at temperatures above 60°C. The form of the oil drops in the cytoplasm of the cotyledon cells was altered after drying. At temperatures above 60°C, the drops broke up and coalesced. After drying at 45 and 60°C, the form of some protein bodies was altered, whereas at 75 and 90°C coalescence of the protein bodies occurred in some cells. It was concluded that the identified alterations can affect the physiologic quality of crambe seeds. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a charged Brownian gas under the influence of external, static and uniform electric and magnetic fields, immersed in a uniform bath temperature. We obtain the solution for the associated Langevin equation, and thereafter the evolution of the nonequilibrium temperature towards a nonequilibrium (hot) steady state. We apply our results to a simple yet relevant Brownian model for carrier transport in GaAs. We obtain a negative differential conductivity regime (Gunn effect) and discuss and compare our results with the experimental results. © 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil CO2 efflux is the primary source of CO2 emissions from terrestrial ecosystems to the atmosphere. The rates of this flux vary in time and space producing hot moments (sudden temporal high fluxes) and hot spots (spatially defined high fluxes), but these high reaction rates are rarely studied in conjunction with each other. We studied temporal and spatial variation of soil CO2 efflux in a water-limited Mediterranean ecosystem in Baja California, Mexico. Soil CO2 efflux increased 522% during a hot moment after rewetting of soils following dry summer months. Monthly precipitation was the primary driver of the seasonal trend of soil CO2 efflux (including the hot moment) and through changes in soil volumetric water content (VWC) it influenced the relationship between CO2 efflux and soil temperature. Geostatistical analyses showed that the spatial dependence of soil CO2 efflux changed between two contrasting seasons (dry and wet). During the dry season high soil VWC was associated with high soil CO2 efflux, and during the wet season the emergence of a hot spot of soil CO2 efflux was associated with higher root biomass and leaf area index. These results suggest that sampling designs should accommodate for changes in spatial dependence of measured variables. The spatio-temporal relationships identified in this study are arguably different from temperate ecosystems where the majority of soil CO2 efflux research has been done. This study provides evidence of the complexity of the mechanisms controlling the spatio-temporal variability of soil CO2 efflux in water-limited ecosystems. (C) 2014 Elsevier Ltd. All rights reserved.