47 resultados para Highest temperature
Resumo:
Larvae of an estuarine grapsid crab Chasmagnathus granulata Dana 1851, from temperate and subtropical regions of South America, were reared in seawater (32 ‰) at five different constant temperatures (12, 15, 18, 21, 24 °C). Complete larval development from hatching (Zoea I) to metamorphosis (Crab I) occurred in a range from 15 to 24 °C. Highest survival (60% to the first juvenile stage) was observed at 18°C, while all larvae reared at 12°C died before metamorphosis. The duration of development (D) decreased with increasing temperature (T). This relationship is described for all larval stages as a power function (linear regressions after logarithmic transformation of both D and T). The temperature-dependence of the instantaneous developmental rate (D-1) is compared among larval stages and temperatures using the Q10 coefficient (van't Hoff's equation). Through all four zoeal stages, this index tends to increase during development and to decrease with increasing T (comparing ranges 12-18, 15-21, 18-24 °C). In the Megalopa, low Q10 values were found in the range from 15 to 24 °C. In another series of experiments, larvae were reared at constant 18°C and their dry weight (W) and respiratory response to changes in T were measured in all successive stages during the intermoult period (stage C) of the moulting cycle. Both individual and weight-specific respiration (R, QO2) increased exponentially with increasing T. At each temperature, R increased significantly during growth and development through successive larval stages. No significantly different QO2 values were found in the first three zoeal stages, while a significant decrease with increasing W occurred in the Zoea IV and Megalopa. As in the temperature-dependence of D, the respiratory response to changes in temperature (Q10) depends on both the temperature range and the developmental stage, however, with different patterns. In the zoeal stages, the respiratory Q10 was minimum (1.7-2.2) at low temperatures (12-18 °C), but maximum (2.2-3.0) at 18-24 °C. The Megalopa, in contrast, showed a stronger metabolic response in the lower than in the upper temperature range (Q10 = 2.8 and 1.7, respectively). We interpret this pattern as an adaptation to a sequence of temperature conditions that should typically be encountered by C. granulata larvae during their ontogenetic migrations: hatching in and subsequent export from shallow estuarine lagoons, zoeal development in coastal marine waters, which are on average cooler, return in the Megalopa stage to warm lagoons. We thus propose that high metabolic sensitivity to changes in temperature may serve as a signal stimulating larval migration, so that the zoeae should tend to leave warm estuaries and lagoons, whereas the Megalopa should avoid remaining in the cooler marine waters and initiate its migration towards shallow coastal lagoons.
Resumo:
The responses of relative growth rate (% day-1) and pigment content (chlorophyll a, phycocyanin and phycoerythrin) to temperature, irradiance and photoperiod were analyzed in culture in seven freshwater red algae: Audouinella hermannii (Roth) Duby, Audouinella pygmaea (Kützing) Weber-van Bosse, Batrachospermum ambiguum Montagne, Batrachospermum delicatulum (Skuja) Necchi et Entwisle, 'Chantransia' stages of B. delicatulum and Batrachospermum macrosporum Montagne and Compsopogon coeruleus (C. Agardh) Montagne. Experimental conditions included temperatures of 10, 15, 20 and 25°C and low and high irradiances (65 and 300 μmol photons m-2 s-1, respectively). Long and short day lengths (16:8 and 8:16 LD cycles) were also applied at the two irradiances. Growth effects of temperature and irradiance were evident in most algae tested, and there were significant interactions among treatments. Most freshwater red algae had the best growth under low irradiance, confirming the preference of freshwater red algae for low light regimens. In general there was highest growth rate in long days and low irradiance. Growth optima in relation to temperature were species-specific and also varied between low and high irradiances for the same alga. The most significant differences in pigment content were related to temperature, whereas few significant differences could be attributed to variation in irradiance and photoperiod or interactions among the three parameters. The responses were species-specific and also differed for pigments in distinct temperatures, irradiances and photoperiods in the same alga. Phycocyanin was generally more concentrated than phycoerythrin and phycobiliproteins were more concentrated than chlorophyll a. The highest total pigment contents were found in two species typical of shaded habitats: A. hermannii and C. coeruleus. The expected inverse relationship of pigment with irradiance was observed only in C. coeruleus. In general, the most favorable conditions for growth were not coincident with those with highest pigment contents.
Resumo:
Responses of net photosynthetic rates to temperature, irradiance, pH/inorganic carbon and diurnal rhythm were analyzed in 15 populations of eight freshwater red algal species in culture and natural conditions. Photosynthetic rates were determined by oxygen concentration using the light and dark bottles technique. Parameters derived from the photosynthesis-irradiance curves indicated adaptation to low irradiance for all freshwater red algae tested, confirming that they tend to occur under low light regimes. Some degree of photoinhibition (β = -0.33-0.01 mg O2 g-1 DW h-1 (μmol photons m-2 s-1)-1) was found for all species/populations analyzed, whereas light compensation points (lc) were very low (≤ 2 μmol photons m- photons s-1) for most algae tested. Saturation points were low for all algae tested (lk = 6-54 μmol photons m-2 S-1; lS = 20-170 μmol photons m-2 s-1). Rates of net photosynthesis and dark respiration responded to the variation in temperature. Optimum temperature values for net photosynthesis were variable among species and populations so that best performances were observed under distinct temperature conditions (10, 15, 20 or 25°C). Rates of dark respiration exhibited an increasing trend with temperature, with highest values under 20-25°C. Results from pH experiments showed best photosynthetic performances under pH 8.5 or 6.5 for all but one species, indicating higher affinity for inorganic carbon as bicarbonate or indistinct use of bicarbonate and free carbon dioxide. Diurnal changes in photosynthetic rates revealed a general pattern for all algae tested, which was characterized by two relatively clear peaks, with some variations around it: a first (higher) during the morning (07.00-11.00 hours.) and a second (lower) in the afternoon (14.00-18.00 hours). Comparative data between the 'Chantransia' stage and the respective gametophyte for one Batrachospermum population revealed higher values (ca 2-times) in the latter, much lower than previously reported. The physiological role of the 'Chantransia' stage needs to be better analyzed.
Resumo:
A comparative analysis of the photosynthetic responses to temperature (10-30°C) was carried out under short-term laboratory conditions by chlorophyll fluorescence and oxygen (O2) evolution. Ten lotic macroalgal species from southeastern Brazil (20°11-20°48′S, 49°18-49°41′W) were tested, including Bacillariophyta, Chlorophyta, Cyanophyta, Rhodophyta and Xanthophyta. Temperature had significant effects on electron transport rate (ETR) only for three species (Terpsinoe musica, Bacillariophyta; Cladophora glomerata, Chlorophyta; and C. coeruleus, Rhodophyta), with highest values at 25-30°C, whereas the remaining species had no significant responses. It also had similar effects on non-photochemical quenching and ETR. Differences in net photosynthesis/dark respiration ratios at distinct temperatures were found, with an increasing trend of respiration with higher temperatures. This implies in a decreasing balance between net primary production and temperature, representing more critical conditions toward higher temperatures for most species. In contrast, high net photosynthesis and photosynthesis/dark respiration ratios at high and wide ranges of temperature were found in three species of green algae, suggesting that these algae can be important primary producers in lotic ecosystems, particularly in tropical regions. Optimal photosynthetic rates were observed under similar environmental temperatures for five species (two rhodophytes, two chlorophytes and one diatom) considering both techniques, suggesting acclimation to their respective ambient temperatures. C. coeruleus was the only species with peaks of ETR and O 2 evolution under similar field-measured temperatures. All species kept values of ETR and net photosynthesis close to the optimum under a broad range of temperatures. Increased non-photochemical quenching, as a measure of thermal dissipation of excess energy, toward higher temperatures was observed in some species, as well as positive correlation of non-photochemical quenching with ETR, and were interpreted as two mechanisms of adaptation of the photosynthetic apparatus to temperature changes. Different optimal temperatures were found for individual species by each technique, generally under lower temperatures by O2 evolution, indicating dependence on distinct factors: increases in temperature generally induced higher ETR due to increased enzymatic activity, whereas increments of enzymatic activity were compensated by increased respiration and photorespiration leading to decreases in net photosynthesis.
Resumo:
This study sought to assess the pulp chamber temperature in different groups of human teeth that had been bleached using hydrogen peroxide gel activated with halogen lamps or hybrid LED/laser appliances. Four groups of ten teeth (maxillary central incisors, mandibular incisors, mandibular canines, and maxillary canines) were used. A digital thermometer with a K-type thermocouple was placed inside pulp chambers that had been filled with thermal paste. A 35% hydrogen peroxide-based red bleaching gel was applied to all teeth and photocured for a total of three minutes and 20 seconds (five activations of 40 seconds each), using light from an LED/laser device and a halogen lamp. The temperatures were gauged every 40 seconds and the data were analyzed by three-way ANOVA, followed by Tukey's test. Regardless of the light source, statistically significant differences were observed between the groups of teeth. The mean temperature values (±SD) were highest for maxillary central incisors and lowest for mandibular canines. The halogen lamp appliance produced more pulp chamber heating than the LED/laser appliance. The increase in irradiation time led to a significant increase in temperature.
Resumo:
AIM: This study evaluated the temperature rise of the adhesive system Single Bond (SB) and the composite resins Filtek Z350 flow (Z) and Filtek Supreme (S), when polymerized by light-emitting diode (LED XL 3000) and quartz-tungsten halogen (QTH Biolux). METHODS: Class V cavities (3 yen2 mm) were prepared in 80 bovine incisors under standardized conditions. The patients were divided as follows: G1: Control; G2: SB; G3: SB + Z; G4: SB + S. The groups were subdivided into two groups for polymerization (A: QTH, B: LED). Light curing was performed for 40 s and measurement of temperature changes during polymerization was performed with a thermocouple positioned inside the pulp chamber. Data were statistically analyzed using ANOVA and Tukey tests. RESULTS: The factors material (P<0.00001) and curing unit (P<0.00001) had significant influence on temperature rise. The lowest temperature increase (0.15 degrees C) was recorded in G2 B and the highest was induced in G1 A (0.75 degrees C, P<0.05). In all groups, lower pulp chamber temperature measurements were obtained when using LED compared to QTH (P<0.05). CONCLUSION: QTH caused greater increases in tooth temperature than LED. However, both sources did not increase pulpal temperature above the critical value that may cause pulpal damage.
Resumo:
The objective of this study was to evaluate the effects of three water and storage temperatures on the oocytes of the jundiá catfish, Rhamdia quelen. A factorial experimental design over time, with treatments completed in triplicate every 48 h, was used (5 × 3 × 3 × 3) to study the exposure of the oocytes to temperatures of 15, 25 and 35. °C and activated with water at 15, 25 and 35. °C each at 0, 45, 90, 135 and 180 minutes post-collection. Linear regression analysis for the response surface model indicated an interaction (p<0.05) between time and temperature of exposure with greater values for fertilization, hatching and normal larvae rates at the time of oocyte collection (70.2 ± 8.4% fertilized oocytes, 66.7 ± 29.4% hatched eggs and 30.3 ± 25.0% normal larvae). According to the statistical model, the water temperature that resulted in the highest fertilization rate was 25.6. °C (p<0.05). The rates of fertilization, hatching and normal larvae correlated positively (p<0.05) with one another, showing that these parameters can be used in the measurement of oocyte quality. Artificial fertilization of oocytes is recommended immediately after collection; if storage is necessary, it should be carried out at 15. °C. © 2011 Elsevier B.V.
Resumo:
The influence of Ta concentration on the stability of BaCe 0.9-xTaxY0.1O3-δ (where x=0.01, 0.03 and 0.05) powders and sintered samples in CO2, their microstructure and electrical properties were investigated. The ceramic powders were synthesized by the method of solid state reaction, uniaxially pressed and sintered at 1550 °C to form dense electrolyte pellets. A significant stability in CO2 indicated by the X-ray analysis performed was observed for the samples with x≥0.03. The electrical conductivities determined by impedance measurements in the temperature range of 550-750 °C and in various atmospheres (dry argon, wet argon and wet hydrogen) increased with temperature but decreased with Ta concentration. The highest conductivities were observed in the wet hydrogen atmosphere, followed by those in wet argon, while the lowest were obtained in the dry argon atmosphere for each dopant concentration. The composition with Ta content of 3 mol% showed satisfactory characteristics: good resistance to CO2 in extreme testing conditions, while a somewhat reduced electrical conductivity is still comparable with that of BaCe0.9Y0.1O3-δ. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
A study was undertaken about the structural and photoluminescent properties at room temperature of CaCu3Ti4O12 (CCTO) powders synthesized by a soft chemical method and heat treated between 300 and 800 °C. The decomposition of precursor powder was followed by thermogravimetric analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) and photoluminescence (PL) measurements. XRD analyses revealed that the powders annealed at 800 °C are becoming ordered and crystallize in the cubic structure. The most intense PL emission was obtained for the sample calcined at 700 °C, which is not highly disordered (300-500 °C) and neither completely ordered (800 °C). From the spectrum it is clearly visible that the lowest wavelength peak is placed around 480 nm and the highest wavelength peak at about 590 nm. The UV/vis absorption spectroscopy measurements showed the presence of intermediate energy levels in the band gap of structurally disordered powders. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
The abundance and ecological distribution of Acetes americanus and Peisos petrunkevitchi were investigated from July 2006 to June 2007, in Ubatuba, Brazil. Eight transects were identified and sampled monthly: six of these transects were located in Ubatuba bay, with depths reaching 21 m, and the other two transects were in estuarine environments. A total of 33,888 A. americanus shrimp were captured, with the majority coming from the shallower transects (up to 10 m). Conversely, 6,173 of the P. petrunkevitchi shrimps were captured in deeper areas (from 9 to 21 m). No individuals from either species were found in the estuary. The highest abundances obtained for both species were sampled during the summer. Canonical correlation analysis resulted in a coefficient value of 0.68 (P = 0.00). The abundance of both species was strongly correlated with depth. Variations in temperature and salinity values were also informative in predicting the seasonal presence of P. petrunkevitchi in deeper areas and A. americanus in the shallower areas of the bay. It is conceivable that the shrimp adjust their ecological distribution according to their intrinsic physiological limitations. © 2012 Marine Biological Association of the United Kingdom.
Resumo:
Antirrhinum majus L. and Senecio douglasii DC. are herbaceous perennial ornamental plants used in landscaping. The multiplication of these plants is by seed; however, there are still doubts about the temperature that can provide higher rates and speed of germination. Thus the aim was to study the effect of temperature on seed germination of A. majus and S. douglasii. The study was conducted separately for each species. The experimental design was entirely randomized with six temperature conditions (temperature controlled constant of 20, 25, 30, 35°C and alternating temperatures of 20-30 and 25-35°C with a photoperiod of 12 hours) with four replications of 100 seeds each. Total germination percentage and germination rate were determined. The means were compared by Tukey test at 5%. For A majus the highest germination percentage was observed at 20°C that did not differ statistically from other temperatures. The highest germination rate was obtained at the temperature of 20 and 25°C. For S. douglasii seeds it was observed that the highest germination percentage and germination rate occurred at 20°C. The lower temperature showed the better percentage and germination rate for these species.
Resumo:
Bacillus cereus is a bacterium with deteriorating potential for dairy products, by being a psychrotrophic organism producer of lipases and proteases. This study evaluated the psychrotrophic behavior, lipolytic and proteolytic activity at 30°C, 10°C and 7°C of 86 strains of B. cereus lato sensu isolated from dairy products, marketed in Southern Brazil. It was also evaluated the optimal temperature for protease production. No strain grew at 7°C; but at 10°C, 84.9% of strains have grown. Only one strain had lipolytic activity at 30°C, and none at 7°C. At 10°C, 16.3% of strains produced lipases. All the strains presented proteolytic activity at 30°C; and at 10°C, 72.1% had this activity, and at 7°C, only 4.6%, an amount significantly lower (p < 0.05). The temperature of 20°C promoted the highest proteolytic activity, and at 10°C, the lowest activity. B. cereus can produce lipases and proteases at room and marginal chilling temperatures, causing technological defects in dairy products stored under these conditions. © 2008 IFRJ.
Resumo:
Although titanium and its alloys own good mechanical properties and excellent corrosion resistance, these materials present poor tribological properties for specific applications that require wear resistance. In order to produce wear-resistant surfaces, this work is aimed at achieving improvement of wear characteristics in Ti-Si-B alloys by means of high temperature nitrogen plasma immersion ion implantation (PIII). These alloys were produced by powder metallurgy using high energy ball milling and hot pressing. Scanning electron microscopy (SEM) and X-ray diffraction identified the presence of α-titanium, Ti6Si2B, Ti5Si3, TiB and Ti3Si phases. Wear tests were carried out with a ball-on-disk tribometer to evaluate the friction coefficient and wear rate in treated and untreated samples. The worn profiles were measured by visible light microscopy and examined by SEM in order to determine the wear rates and wear mechanisms. Ti-7.5Si-22.5B alloy presented the highest wear resistance amongst the untreated alloys produced in this work. High temperature PIII was effective to reduce the wear rate and friction coefficient of all the Ti-Si-B sintered alloys. © 2013 Elsevier B.V.
Resumo:
Roystonea regia (Kunth) O.F. Cook is largely used as ornamental. The propagation is done almost exclusively by seeds; however, there is a great variation in the germination process influenced by many factors. The objective of this work was to study the effects of the temperature and maturation stages on the germination of R. regia seeds. The experimental design was entirely randomized in a factorial arrangement 6x3 (six temperatures: constant at 20, 25, 30 and 35 degrees C and alternated at 20-30 and 25-35 degrees C, with a photoperiod of 12 hours; and three fruit maturation stages: brown, yellow and black), with four replications of 25 disseminules (seed with stucked endocarp) each. The disseminules had their mesocarp and exocarp were removed and shade dried. Their moisture content was determined, and then they were placed in plastic boxes (gerbox type) containing vermiculite. The disseminules, with the germinative intumescence, were daily noted until germination was steady. The germination rate and the germination speed index were calculated, and the data were submitted to the variance analysis. The means were compared by the Tukey test. It was concluded that the highest germination rate (99.7%) and germination speed were obtained by seeds from mature (black) fruits at the temperature of 35 degrees C.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)