186 resultados para Heat Shock Protein 70
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present study we have investigated the effects of heat acclimation on brain and hepatic Hsp70 protein levels and body temperature of broiler chickens in response to gradual heat stress. Two groups of broilers were raised up to 47 days of age under distinct temperature conditions: thermoneutral (TN, according to bird age) or hot environmental (HS, 31-33°C). At 46 days of age, the birds reared at high ambient temperature were transferred to thermoneutrality conditions. After 18 h, these birds and the birds reared at thermoneutral temperature were submitted to gradual heat stress in a climatic chamber so that environment temperature was increased from 28 to 40ºC at a rate of 2ºC/h. Colonic temperature was measured using a thermometer sensor probe at each two hours, and hepatic and brain tissues were collected immediately after slaughter in order to assess Hsp70 protein level by Western blotting analysis. The colonic temperatures of birds reared at high temperature increased steeply during the first 2 h of heat stress (1.06ºC/h) and more slowly thereafter (0.59ºC/h). Broilers reared at thermoneutral temperature showed a small increase in the first 4 h of heat stress (0.18ºC/h) and then colonic temperature increased sharply (0.72ºC/h). Nevertheless, both groups presented similar final colonic temperature by the end of the stress period. Hsp70 levels (ng Hsp70 µg total protein-1) did not change in the liver or brain of the birds reared at high temperature. on the other hand, both liver and brain Hsp70 levels increased significantly during heat stress in the animals reared at thermoneutrality, with a higher expression of this peptide in brain tissue.
Resumo:
In recent years, several studies have demonstrated the protective effect of Heat Shock Proteins (HSP) on different organs and tissues under stressful conditions. However, most research explores the performance of those molecular chaperones during immune responses or pathological conditions like cancer, whereas the number of studies related to the performance of HSPs in the skin during diverse natural or physiopathological conditions is very low. Therefore, the aim of this article was to summarize the main concepts concerning the expression and performance of HSPs, from analysis of current medicine and cosmetics publications, as well as exploring the importance of these proteins in the dermatological area in physiological events such as cutaneous aging, skin cancer and wound healing and to present final considerations related to biotechnology performance in this area.
Resumo:
There are many reports of cryptosporidial infection in ostriches, but none with molecular characterization of the isolates. A study was undertaken for the characterization of a Brazilian Cryptosporidium sp. ostrich isolate by using molecular phylogenetic analysis of fragments of the 18S ribosonial DNA. heat-shock Protein (lisp) 70 coding gene, and actin coding gene. Biological studies were accomplished by the experimental inoculation of chickens via oral or intratracheal routes with fresh ostrich Cryptosporidium sp. oocysts. Molecular analysis of nuceotide sequences of the 3 genes by using neighbor-joining and parsimony methods grouped the ostrich isolate as a sister taxon of Crypiosporidium badeyi and showed that the os(rich isolate is genetically distinct from all other known Cryptosporidium species or genotypes. None of the inoculated chickens developed infection as determined by mucosal smears. histology, and fecal screening for oocysts. Although biological and molecular Studies indicate that the ostrich Cryptosporidium is a new species, further Studies regarding morphological. biological, and molecular characteristics of other ostrich isolates are required to confirm the species status of the ostrich Cryprosporidium.
Resumo:
We report the identification of two distinct homologues of the 70-kDa mitochondrial heat shock protein (mtHSP70) from Leishmania chagasi/Leishmania infantum (Lc2.1 and Lc2.2). in Leishmania species, multiple genes encoding Lc2.2 are present whilst single genes encode Lc2.1. Strikingly, genes encoding Lc2.1-like proteins are absent from Trypanosoma species. Lc2.2 is characterized by a poly-glutamine rich C-terminus, absent from Lc2.1 or mtHSP70 homologues outside the trypanosomatids. Lc2.1 displays unique substitutions within its peptide-binding domain which modify amino acids strictly conserved in cytoplasmic and mitochondrial HSP70 proteins alike. Affinity purified antibodies recognize mainly a single protein in extracts from promastigotes/epimastigotes of various Leishmania/Trypanosoma species. Upon differentiation of Leishmania amazonensis into amastigotes a second protein (presumably Lc2.1) is induced and becomes the predominant mtHSP70 homologue expressed. Subcellular localization of these proteins was investigated and ratified a distribution throughout the mitochondrial matrix. Our results imply novel mtHSP70 functions which evolved within the genus Leishmania. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
As respostas às mudanças de temperatura de plantas aclimatadas e não aclimatadas de E. grandis cultivadas in vitro foram avaliadas considerando alterações dos níveis de prolina e proteínas solúveis totais. Análises de proteínas solúveis através de SDS-PAGE e prolina foram realizadas após 12h a 12ºC (aclimatação ao frio) ou a 33ºC (aclimatação ao calor), e imediatamente depois dos choques térmicos a 41ºC e 0ºC. Análises também foram realizadas após um período de 24h depois dos choques térmicos (período de recuperação). O tratamento de temperatura a 0ºC não alterou o padrão de proteínas nas plantas aclimatadas e não aclimatadas, entretanto a temperatura baixa induziu altos níveis de prolina, que se mantiveram relativamente altos após o período de recuperação. Três novas proteínas (90,5, 75 e 39 kDa), provavelmente HSPs, foram observadas nas plantas aclimatadas e não aclimatadas submetidas às temperaturas altas. As plantas expostas a 41ºC foram capazes de recuperar-se dos choques após o período de recuperação, entretanto não houve recuperação completa das plantas expostas às baixas temperaturas. O efeito da aclimatação sobre a recuperação (homeostasis) pode variar dependendo do parâmetro avaliado, tipo e duração do choque térmico.
Resumo:
Glycogen synthase, an enzyme involved in glycogen biosynthesis, is regulated by phosphorylation and by the allosteric ligand glucose-6-phosphate (G6P). In addition, enzyme levels can be regulated by changes in gene expression. We recently cloned a cDNA for glycogen synthase (gsn) from Neurospora crassa, and showed that gsn transcription decreased when cells were exposed to heat shock (shifted from 30degreesC to 45degreesC). In order to understand the mechanisms that control gsn expression, we isolated the gene, including its 5' and 3' flanking regions, from the genome of N. crassa. An ORF of approximately 2.4 kb was identified, which is interrupted by four small introns (II-V). Intron I (482 bp) is located in the 5'UTR region. Three putative Transcription Initiation Sites (TISs) were mapped, one of which lies downstream of a canonical TATA-box sequence (5'-TGTATAAA-3'). Analysis of the 5'-flanking region revealed the presence of putative transcription factor-binding sites, including Heat Shock Elements (HSEs) and STress Responsive Elements (STREs). The possible involvement of these motifs in the negative regulation of gsn transcription was investigated using Electrophoretic Mobility Shift Assays (EMSA) with nuclear extracts of N. crassa mycelium obtained before and after heat shock, and DNA fragments encompassing HSE and STRE elements from the 5'-flanking region. While elements within the promoter region are involved in transcription under heat shock, elements in the 5'UTR intron may participate in transcription during vegetative growth. The results thus suggest that N. crassa possesses trans-acting elements that interact with the 5'-flanking region to regulate gsn transcription during heat shock and vegetative growth.
Resumo:
A DNA vaccine based on the heat-shock protein 65 Mycobacterium leprae gene (pHSP65) presented a prophylactic and therapeutic effect in an experimental model of tuberculosis. In this paper, we addressed the question of which protective mechanisms are activated in Mycobacterium tuberculosis-infected mice after immune therapy with pHSP65. We evaluated activation of the cellular immune response in the lungs of infected mice 30 days after infection (initiation of immune therapy) and in those of uninfected mice. After 70 days (end of immune therapy), the immune responses of infected untreated mice, infected pHSP65-treated mice and infected pCDNA3-treated mice were also evaluated. Our results show that the most significant effect of pHSP65 was the stimulation of CD8(+) lung cell activation, interferon-gamma recovery and reduction of lung injury. There was also partial restoration of the production of tumour necrosis factor-alpha. Treatment with pcDNA3 vector also induced an immune stimulatory effect. However, only infected pHSP65-treated mice were able to produce significant levels of interferon-gamma and to restrict the growth of bacilli.
Resumo:
The high incidence of tuberculosis around the world and the inability of BCG to protect certain populations clearly indicate that an improved vaccine against tuberculosis is needed. A single antigen, the mycobacterial heat shock protein hsp65, is sufficient to protect BALB/c mice against challenge infection when administered as DNA vaccine in a three-dose-based schedule. In order to simplify the vaccination schedule, we coencapsulated hsp65-DNA and trehalose dimicolate (TDM) into biodegradable poly(DL-lactide-co-glycolide) (PLGA) microspheres. BALB/c mice immunized with a single dose of DNA-hsp65/TDM-1oaded microspheres produced high levels of IgG2a subtype antibody and high amounts of IFN-gamma in the supernatant of spleen cell cultures. DNA-hsp65/TDM-loaded microspheres were also able to induce high IFN-gamma production in bulk lung cells from challenged mice and confer protection as effective as that attained after three doses of naked DNA administration. This new formulation also allowed a ten-fold reduction in the DNA dose when compared to naked DNA. Thus, this combination of DNA vaccine and adjuvants with immunomodulatory and carrier properties holds the potential for an improved vaccine against tuberculosis.