245 resultados para HYPOTHALAMUS-PITUITARY-TESTICULAR AXIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study investigated the effect of non-ventilation of the incubator during the first 10 days of incubation and its combination with dexamethasone administration at day 16 or 18 of incubation on hatching parameters and embryo and post-hatch chick juvenile physiology. A total of 2400 hatching eggs produced by Cobb broiler breeders were used for the study. Blood samples were collected at day 18 of incubation, at internal pipping stage (IP), at the end of hatch (day-old chick) and at 7-daypost-hatch for T-3, T-4 and corticosterone levels determination. From 448 to 506 h of incubation, the eggs were checked individually in the hatcher every 2 h for pipping and hatching. The results indicate that non-ventilation during the first 10-day shortened incubation duration up to IP, external pipping (EP) and hatch, had no effect on hatchability and led to higher T-3 levels at IP but lower corticosterone levels at 7-day-post-hatch. The injection of dexamethasone at days 16 and 18 of incubation affected hatching and blood parameters in both the ventilated and non-ventilated embryos differentially and the effect was dependent on the age of the embryo. Dexamethasone increased T-3 levels and T-3/T-4 ratios but the effect was greater with early non-ventilation of eggs. Dexamethasone decreased hatchability but the effect was greater when injected at day 16 and especially in ventilated embryos. The effects of incubation protocols and dexamethasone treatments during incubation were still apparent in the hatched chicks until 7 days of age. The changes in T-3, T-4 and corticosterone levels observed in response to the early incubation conditions and late dexamethasone treatments in this study suggest that incubator ventilation or non-ventilation may influence the hypothalamic-pituitary-adrenal axis (HPA) regulation of stress levels (in terms of plasma corticosterone levels) and thyroid function in the embryo with impact on incubation duration, hatching events and early post-hatch life of the chick. Our results also suggest that some stages of development are more sensitive to dexamethasone administration as effects can be influenced by early incubation protocols. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The level of stress during acute or chronic exercise is important since higher levels of stress may impair homeostasis. The adrenal gland is an essential stress-responsive organ involved in the hypothalamic-pituitary-adrenal axis. The aim of the study was to analyze the sensitivity of different stress biomarkers of the adrenal gland during acute treadmill running at different intensities. Adult rats performed three 25 min running tests at velocities of 15, 20 and 25 m/min, for determination of maximum lactate steady state (MLSS). After obtaining individual MLSS animals were assigned to two groups: M, sacrificed after 25 minutes of exercise at MLSS, and AM, sacrificed after exercise at 25% above MLSS. For comparison, a control group C was sacrificed at rest. Blood corticosterone concentrations, as well, adrenal gland cholesterol and ascorbic acid concentrations were used as biomarkers. Serum corticosterone concentrations were higher after exercise in both M (1802,74±700,42) and AM (2027,96±724,94) groups when compared C group (467,11±262,12), but were not different as a function of exercise intensity. No difference in adrenal ascorbic acid (M=2,37±0,66; AM=2,11±0,50 and C=2,54±0,53) and cholesterol (M=1,04±0,12; AM=0,91±0,31 and C=1,15±0,40) levels were observed when the three groups were compared. Serum corticosterone concentrations showed to be sensitive to acute treadmill exercise intensity. On the other hand, ascorbic acid and cholesterol concentrations in adrenal were biomarkers not adequate to evaluate exercise stress in rats.
Resumo:
The circulating level of cortisol is regulated by the hypothalamic-pituitary-adrenal axis through a neuroendocrine feedback circuit. This circuit can be activated by physiological stimuli such as stress, diseases, and exercise. High levels of serum cortisol hormone normally occur as a byproduct of aging, and can cause several types of damage to the organism and exacerbate immunosenescence. There is a great deal of variability in the cortisol response with regard to type, intensity, volume, and frequency of exercise. However, these relationships have been extensively studied with respect to the acute effects of exercise. Despite the well-known effects of acute exercise on cortisol response, it is unclear how it is affected by chronic exercise and the aging process. Therefore, the aim of this study was to conduct a review of studies that attempt to analyze the influence of chronic exercise on serum cortisol hormone in older people. In order to accomplish this goal, a review from 1970 to June 2012 period was performed using the following databases: Biological Abstracts, PsycINFO, PubMed/Medline, and the Web of Science. Eight articles met the criteria used in this study. Based on the included articles, chronic exercise may influence the serum levels of cortisol levels in older people. Despite this evidence, these results may not be generalized to the entire population of older people, given the few number of studies and especially because the studies showed diversity in variables and methodologies. © 2013 European Group for Research into Elderly and Physical Activity (EGREPA).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Pediatria - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Alterations in the hypothalamic-pituitary-gonadal axis in females determine the transition from regular to irregular reproductive cycles, with loss of fertility. Stimulation of noradrenergic neurons of the anteroventral periventricular neurons (AVPV) is essential for regular reproductive cycles. Therefore, we examined the activity of neurons of the AVPV and measure the noradrenaline (NE) of acyclic rats, in constant estrus, and compared it with that of cyclic rats in estrus. Female cyclic (4-5months) and acyclic (17-18months) rats were euthanized at 10, 14, and 18h in estrus. Brains were processed for immunoreactivity to antigens related to Fos (FRA) in AVPV, and the NE was determined by HPLC-ED. Plasma concentrations of LH, FSH, E2 and P4 were determined. In the acyclic animals, plasma LH was higher but the FSH was lower. There was decreasing P4 at different times, while the E2 was constant and lower in acyclic rats. FRA-ir expression in AVPV neurons of acyclic rats as well as turnover of NE was higher when compared with cyclic group. The preliminary findings showed increased activity in AVPV neurons in aging contribute to changes in the temporal pattern of neuroendocrine signaling, compromising the accuracy of inhibitory and stimulatory effects, causing irregularity in the estrous cycle and determining reproductive senescence.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)