49 resultados para HYPOTHALAMIC CONNECTIONS
Resumo:
The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIFSA domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIFSA may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.
Resumo:
The aim of the present study was to analyse the haemodynamic effects induced by the hypothalamic disconnection (HD) caudal or rostral to the paraventricular nucleus of the hypothalamus (PVN). Mean arterial pressure (MAP), hindlimb, renal and mesenteric blood flow and vascular conductance (HVC, RVC and MVC, respectively) were measured in urethane (1.2 g/kg, i.v.) anesthetized rats for 60 min after disconnection. HD caudal to the PVN was performed with a double-edged microknife of bayonet shape (R=1 mm, H=2 mm) stereotaxically placed, lowered 2.8 mm caudal to the bregma along the midline. The cut was achieved by rotating the microknife 90° right and 90° left. HD rostral to the PVN was performed with the knife placed 0.8 mm caudal to the bregma. Thirty minutes after the hypothalamic disconnection caudal (HD-C), a decrease in MAP was observed (-14±3 mm Hg), reaching a 60-min decrease of 30±3 mm Hg. Hindlimb conductance increased 10 min after HD (156±14%) and remained elevated throughout the experimental period. On the contrary, we observed a transitory renal vasoconstriction (82±9%, ≤20 min) and a late mesenteric vasodilation, starting at 30 min (108±4%) and reaching 138±6% at 60 min. In rats with HD rostral to the PVN, we only observed minor changes in the cardiovascular parameters. In the MAP, there was a slight decrease 60 min after the hypothalamic disconnection rostral (HD-R) (-9±4 mm Hg). There were no significant changes in HVC. RVC and MVC were increased 60 min after the HD-R (116±12% and 124±11%, respectively). These results suggest that vasodilation in the hindlimb and in the mesenteric bed could contribute to the observed decrease in MAP in HD caudal to PVN rats. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The so-called endocrine disruptors have been described as compounds which interfere with the estrogen action in their receptors and may exert a crucial role in the development of the reproductive tract and in the brain sexual differentiation. Thus, conducts and/or exposure to these drugs in the perinatal period that apparently do not endanger the neonate may cause side effects. During embrionary development, the gonads, through discharge of a small quantity of reproductive hormones, will guarantee the phenotype of male or female at birth, as well as actuate in specific areas sexual differentiation of the central nervous system. Several experimental models have shown an interference of drugs acting as endocrine disruptors in hypothalamic sexual differentiation. Thus, reproductive function is impaired by exposure to estrogen in the perinatal life of rats and the mechanisms involved in this effect are distinct for males and females. Perinatal exposure to drugs which may be considered endocrine disrupters may induce an incomplete masculinization and defeminization of the central nervous system. Alterations in these processes, if present, generally are perceived only at puberty or adult reproductive life. These later alterations may include anomalies in the process of fertility or in sexual behavior.
Resumo:
Cochlear root neurons (CRNs) are involved in the acoustic startle reflex, which is widely used in behavioral models of sensorimotor integration. A short-latency component of this reflex, the auricular reflex, promotes pinna movements in response to unexpected loud sounds. However, the pathway involved in the auricular component of the startle reflex is not well understood. We hypothesized that the auricular reflex is mediated by direct and indirect inputs from CRNs to the motoneurons responsible for pinna movement, which are located in the medial subnucleus of the facial motor nucleus (Mot7). To assess whether there is a direct connection between CRNs and auricular motoneurons in the rat, two neuronal tracers were used in conjunction: biotinylated dextran amine, which was injected into the cochlear nerve root, and Fluoro-Gold, which was injected into the levator auris longus muscle. Under light microscopy, close appositions were observed between axon terminals of CRNs and auricular motoneurons. The presence of direct synaptic contact was confirmed at the ultrastructural level. To confirm the indirect connection, biotinylated dextran amine was injected into the auditory-responsive portion of the caudal pontine reticular nucleus, which receives direct input from CRNs. The results confirm that the caudal pontine reticular nucleus also targets the Mot7 and that its terminals are concentrated in the medial subnucleus. Therefore, it is likely that CRNs innervate auricular motoneurons both directly and indirectly, suggesting that these connections participate in the rapid auricular reflex that accompanies the acoustic startle reflex. © 2008 Wiley-Liss, Inc.
Resumo:
Craniopharyngiomas and germ cell tumors (GCT) may affect the pituitary-hypothalamic region during childhood. Although different in origin, their clinical and radiological features may be similar. In this article we present a 5-year-old girl with clinical and radiological findings (computer tomography calcification) that were initially considered as craniopharyngioma. However clinical outcome, blood and cerebral spinal fluid tumoral markers, and results from anatomopathology and immunohistochemistry disclosed a mixed GCT. This case report highlights that some clinical features and radiological findings of pituitary-hypothalamic tumors may be misdiagnosed as craniopharyngioma mainly when there is a mature teratoma with cartilaginous tissue differentiation. Copyright© ABE&M.
Resumo:
This work presents a study regarding the optimization of multipulse converters. A general expression for the connection (Δ or Y) for both 12 and 18-pulses is obtained and describes the output voltages on the secondary windings, depending on the voltage reference from the primary. These generalized expressions allows choosing different ratios between input and output voltages and as result an optimum operation point for the converter can be calculated. Considering Δ-connected converters the optimum point occurs when the magnetic core of the autotransformer processes 18% and 17% of the output power for 12 and 18-pulses, respectively. For Y-connected converters the optimum point occurs when the kVA rating is 13% and 18% for 12 and 18-pulses, respectively. Based on these results magnetic elements can be calculated and designed leading to a great weight and volume reduction and also to lower costs and losses. Finally an analysis is made to improve the kVA rating of the transformers for 12 and 18 pulses converters. © 2009 IEEE.
Resumo:
Multipulse rectifier topologies based on autoconnections, or differential connections, are more and more applied as interface stages between the mains and power converters. These topologies mitigate many low-order current harmonics in the utility, reducing the THD (total harmonic distortion) and increasing the power factor. This paper presents a mathematical model based on phasor diagrams, that results in a single expression able to unify all differential topologies connections (Delta and Wye), for both step-up or step-down autotransformers, for 12 and 18-pulse AC-DC converters. The proposed family of converters can be designed for any relationship between the input voltage and the load voltage. An immediate application would be the retrofit, i.e. to replace a conventional rectifier with poor quality of the processed energy by the 12 or 18 pulses rectifier with Wye or Delta-differential connection. The design procedure, simple and fast, is developed and tested for a prototype rating 6 kW and 250 V on the DC load © 2010 IEEE.
Resumo:
Objective: Biological and mechanical implant-abutment connection complications and failures are still present in clinical practice, frequently compromising oral function. The purpose of this study was to evaluate the reliability and failure modes of anterior single-unit restorations in internal conical interface (ICI) implants using step-stress accelerated life testing (SSALT). Materials and methods: Forty-two ICI implants were distributed in two groups (n = 21 each): group AT-OsseoSpeed™ TX (Astra Tech, Waltham, MA, USA); group SV-Duocon System Line, Morse Taper (Signo Vinces Ltda., Campo Largo, PR, Brazil). The corresponding abutments were screwed to the implants and standardized maxillary central incisor metal crowns were cemented and subjected to SSALT in water. Use-level probability Weibull curves and reliability for a mission of 50,000 cycles at 200 N were calculated. Differences between groups were assessed by Kruskal-Wallis along with Bonferroni's post-hoc tests. Polarized-light and scanning electron microscopes were used for failure analyses. Results: The Beta (β) value derived from use level probability Weibull calculation was 1.62 (1.01-2.58) for group AT and 2.56 (1.76-3.74) for group SV, indicating that fatigue was an accelerating factor for failure of both groups. The reliability for group AT was 0.95 and for group SV was 0.88. Kruskal-Wallis along with Bonferroni's post-hoc tests showed no significant difference between the groups tested (P > 0.27). In all specimens of both groups, the chief failure mode was abutment fracture at the conical joint region and screw fracture at neck's region. Conclusions: Reliability was not different between investigated ICI connections supporting maxillary incisor crowns. Failure modes were similar. © 2012 John Wiley & Sons A/S.
Resumo:
Objective. This study aimed to investigate the stress distribution in screwed implant-supported prostheses with different implant-abutment connections by using a photoelastic analysis. Materials and methods. Four photoelastic models were fabricated in PL-2 resin and divided according to the implant-abutment connection (external hexagon (EH) and Morse taper (MT) implants (3.75 × 11.5 mm)) and the number crowns (single and 3-unit piece). Models were positioned in a circular polariscope and 100-N axial and oblique (45) loading were applied in the occlusal surface of the crowns by using a universal testing machine. The stresses were photographically recorded and qualitatively analyzed using software (Adobe Photoshop). Results. Under axial loading, the MT implants exhibited a lower number of fringes for single-unit crowns than EH implants, whereas for a 3-unit piece the MT implants showed a higher number of fringes vs EH implants. The oblique loading increased the number of fringes for all groups. Conclusion. In conclusion, the MT implant-abutment connection reduced the amount of stress in single-unit crowns, for 3-unit piece crowns the amount of stress was lower using an external hexagon connection. The stress pattern was similar for all groups. Oblique loading promoted a higher stress concentration than axial loading. © Informa Healthcare.
Resumo:
Background: The purpose of this study is to analyze the tension distribution on bone tissue around implants with different angulations (0 degrees, 17 degrees, and 30 degrees) and connections (external hexagon and tapered) through the use of three-dimensional finite element and statistical analyses.Methods: Twelve different configurations of three-dimensional finite element models, including three inclinations of the implants (0 degrees, 17 degrees, and 30 degrees), two connections (an external hexagon and a tapered), and two load applications (axial and oblique), were simulated. The maximum principal stress values for cortical bone were measured at the mesial, distal, buccal, and lingual regions around the implant for each analyzed situation, totaling 48 groups. Loads of 200 and 100 N were applied at the occlusal surface in the axial and oblique directions, respectively. Maximum principal stress values were measured at the bone crest and statistically analyzed using analysis of variance. Stress patterns in the bone tissue around the implant were analyzed qualitatively.Results: The results demonstrated that under the oblique loading process, the external hexagon connection showed significantly higher stress concentrations in the bone tissue (P < 0.05) compared with the tapered connection. Moreover, the buccal and mesial regions of the cortical bone concentrated significantly higher stress (P < 0.005) to the external hexagon implant type. Under the oblique loading direction, the increased external hexagon implant angulation induced a significantly higher stress concentration (P = 0.045).Conclusions: The study results show that: 1) the oblique load was more damaging to bone tissue, mainly when associated with external hexagon implants; and 2) there was a higher stress concentration on the buccal region in comparison to all other regions under oblique load.
Resumo:
The aim of this in vitro study was to use strain gauge (SG) analysis to compare the effects of the implant-abutment joint, the coping, and the location of load on strain distribution in the bone around implants supporting 3-unit fixed partial prostheses. Three external hexagon (EH) implants and 3 internal hexagon (IH) implants were inserted into 2 polyurethane blocks. Microunit abutments were screwed onto their respective implant groups. Machined cobalt-chromium copings and plastic copings were screwed onto the abutments, which received standard wax patterns. The wax patterns were cast in a cobalt-chromium alloy (n = 5): group 1 = EH/machined. group 2 = EH/plastic, group 3 = IH/machined, and group 4 = IH/plastic. Four SGs were bonded onto the surface of the block tangentially to the implants. Each metallic structure was screwed onto the abutments and an axial load of 30 kg was applied at 5 predetermined points. The magnitude of microstrain on each SG was recorded in units of microstrain (mu epsilon). The data were analyzed using 3-factor repeated measures analysis of variance and a Tukey test (alpha = 0.05). The results showed statistically significant differences for the type of implant-abutment joint, loading point, and interaction at the implant-abutment joint/loading point. The IH connection showed higher microstrain values than the EH connection. It was concluded that the type of coping did not interfere in the magnitude of microstrain, but the implant/abutment joint and axial loading location influenced this magnitude.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)