94 resultados para HOMOALLYLIC ALCOHOLS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Alcohols and acids can be switched to produce ethers or esters by varying the alcohol to catalyst mol ratio, in a new etherification and esterification method using NbCl5/Al2O3 catalyst under "solvent free" conditions and promoted by MW (microwave) irradiation. A "two sites" mechanism for the reaction is proposed, in an attempt to clarify the tendency of the catalyst to be dependent on the alcohol alone during the esterification process. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Leaf epicuticular waxes may affect substrate selection by leaf-cutting ants, and host recognition by several phytophagous insects. The influence of the crude epicuticular wax of Didymopanax vinosum E. March. (Araliaceae), and its major constituents lupeol and free primary alcohols, on substrate selection by the leaf-cutting ant Atta sexdens rubropilosa Forel, was investigated. Two ant colonies were used in laboratory bioassays. Corn flakes (zea) were impregnated with chloroform solutions of the substances being tested and fed to the adults. One of the colonies gave results, in most of the tests, not significantly different from the controls. The other colony, however, discriminated against the crude wax, a strong deterrent effect being observed from the first of a series of eight trials. The same colony was able to discriminate against lupeol after the second trial. The fraction of primary n-alcohols (22% C28, 66% C30 and 12% C32) deterred feeding only after the fifth trial. The results demonstrate that some constituents of epicuticular waxes may deter the foraging activity of A. sexdens rubropilosa, depending, however, on the colony under observation. It is suggested that lupeol, of the foliar wax of D. vinosum, is an important deterrent to leaf-cutting ants, although with less pronounced effects than those observed in tests with the crude wax.
Resumo:
Tin dioxide is an n-type semiconductor that when doped with other metallic oxides exhibits non-linear electric behavior with high non-linear coefficient values typical of a varistor. In this work, electrical properties of the SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 ceramics systems were studied with the objective of analyzing the influence of MnO2 on sintering behavior and electrical properties of these systems. The compacts were prepared by powder mixture process and sintered at 1300°C for 1 hour, in air, using a constant heating rate of 10°C/min. The morphological and structural properties were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The densities of the sintered ceramics were measured using the Archimedes method. The SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 systems presented breakdown fields (Eb) about 3100 V.cm-1 and 3800 V.cm-1, respectively, and non-linear coefficient (α) about 10 and 20, respectively.
Resumo:
The development of Leucoagaricus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens was inhibited in vitro by synthetic compounds containing the piperonyl group. In addition, worker ants that were fed daily on an artificial diet to which these compounds were added had a higher mortality rate than the controls. The inhibition of the fungal growth increased with the size of the carbon side chain ranging from C1 through C8 and decreasing thereafter. 1-(3,4-Methylenedioxybenzyloxy)octane (compound 5) was the most active compound and inhibited the fungal development by 80% at a concentration of 15 μg m1-1. With worker ants the toxic effects started with compound 5 and increased with the number of carbons in the side chain. Thus, for the same concentration (100 μg m1-1) the mortality rates observed after 8 days of diet ingestion were 82%, 66% and 42%, for 1-(3,4-methylenedioxybenzyloxy)decane, 1-(3,4-methylenedioxybenzyloxy)dodecane and compound 5, respectively, whereas with commercial piperonyl butoxide the mortality was 68%. The latter compound, which is known as a synergist insecticide, was as inhibitory to the symbiotic fungus as the synthetic compound 5. The possibility of controlling these insects in the future using compounds that can target simultaneously both organisms is discussed. © 2001 Society of Chemical Industry.
Resumo:
The mandibular gland secretions of newly emerged, nurse and forager workers, virgin and physogastric queens and males of Melipona bicolor were analyzed by gas chromatography-mass spectrometry. The secretion is composed of a blend of hydrocarbons, alcohols, esters, and acids. The secretion is caste-sex specific and also differs with the tasks performed by the workers and the physiological reproductive condition of the queens.
Resumo:
Fluorescence diagnosis of malignant lesions has been showed as an attractive optical technique due especially to its real-time response and a more objective and quantitative evaluation. Even though the oral cavity allows a direct examination many lesions are diagnosed when it is already in advanced stage, compromising the patient prognosis. In this study, the fluorescence spectroscopy was used to the detection of chemically induced carcinoma at the lateral border of the tongue in a hamster model. Two excitations wavelengths in visible region were applied: 442 and 532 nm. All the spectra results were analyzed comparing with the histopathological diagnosis. The better results were achieved with the 442 nm laser excitation. The spectra from carcinoma showed new emission bands and these were used to determined different ratios for a quantitative analysis. Using the 625-645 nm fluorescence range under 442 nm excitation (A3 coefficient) the percentage of false negative was of 9.1%, however the false positive percentage was of 18.5%. The 532 nm excitation provided a better normal tissue detection compared to 442 nm excitation. The ideal clinical condition is probably the use of multiple wavelengths excitation for a broader tissue fluorescence investigation.
Resumo:
The objective of this work is to introduce and demonstrate the technical feasibility of the continuous flash fermentation for the production of butanol. The evaluation was carried out through mathematical modeling and computer simulation which is a good approach in such a process development stage. The process consists of three interconnected units, as follows: the fermentor, the cell retention system (tangential microfiltration) and the vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The efficiency of this process was experimentally validated for the ethanol fermentation, whose main results are also shown. With the proposed design the concentration of butanol in the fermentor was lowered from 11.3 to 7.8 g/l, which represented a significant reduction in the inhibitory effect. As a result, the final concentration of butanol was 28.2 g/l for a broth with 140 g/l of glucose. Solvents productivity and yield were, respectively, 11.7 g/l.h and 33.5 % for a sugar conversion of 95.6 %. Positive aspects about the flash fermentation process are the solvents productivity, the use of concentrated sugar solution and the final butanol concentration. The last two features can be responsible for a meaningful reduction in the distillation costs and result in environmental benefits due to lower quantities of wastewater generated by the process. © 2008 Berkeley Electronic Press. All rights reserved.
Resumo:
The present work had as objective the study of clones of Eucalyptus grandis and E. grandis × E. urophylla under boron suppression on growth in height and diameter, development of symptoms of deficiency, boron content in leaf and polyols production. Plants were cultivated in pots with quartz in a greenhouse using two levels of boron per solution (0 and 0.5 mg L-1 of B). The 32 treatments followed a factorial scheme: 16 × 2 -16 clones and two doses of boron in a randomized block experimental design, with fve repetitions, totaling 160 plots. Plants were evaluated weekly for deficiency symptoms and monthly for height, stem diameter and leaf content of boron in different plant parts. The content of polyols was measured in two occasions: at 162 days and 192 days after starting the experiment. Decrease of growth and quick development of deficiency symptoms 40 days after boron suppression were observed, as well as a decrease of polyols synthesis. Foliar analysis, with boron supplement, resulted in the presence of mannitol and sorbitol in high enough concentration so that the evaluated plants could be considered rich in those polyols. Under boron suppression, boron levels in different portions of branches and stems of plants, as well as the presence of mannitol and sorbitol, indicated a conditional mobility of boron in Eucalyptus.
Resumo:
The poly(furfuryl alcohol) is highly indicated to obtain advanced carbonaceous materials due mainly to its good carbon yield (around 50%) and a controllable cure reaction. In the processing of some carbonaceous materials, such as monolithic vitreous carbon, it is necessary to make sure that the material has the smallest porosity to be used in nobler applications such as heart valves and aerospace integrated systems. In this manuscript, a design of experiments was used to study the influence of viscosity, pH, and moisture in the porosity of the cured material. This study shows that the moisture exerts a significant influence on the porosity and the trend of the results lead to conclude that lower viscosity and moisture, and the use of non-neutralized poly(furfuryl alcohol) resins lead to obtain materials with better quality. © 2012 Wiley Periodicals, Inc.
Resumo:
The presence of residual endodontic sealer in the pulp chamber may cause discoloration of the dental crown and interfere with the adhesion of restorative materials. The aim of this study was to compare the efficacy of different solvents in removing residues of an epoxy resin-based sealer (AH Plus) from the dentin walls of the pulp chamber, by scanning electron microscopy (SEM). Forty-four bovine incisor dental crown fragments were treated with 17% EDTA and 2.5% NaOCl. Specimens received a coating of AH Plus and were left undisturbed for 5 min. Then, specimens were divided in four groups (n = 10) and cleaned with one of the following solutions: isopropyl alcohol, 95% ethanol, acetone solution, or amyl acetate solution. Negative controls (n = 2) did not receive AH Plus, while in positive controls (n = 2) the sealer was not removed. AH Plus removal was evaluated by SEM, and a score system was applied. Data were analyzed by Kruskal-Wallis and Dunn tests. None of the solutions tested was able to completely remove AH Plus from the dentin of the pulp chamber. Amyl acetate performed better than 95% ethanol and isopropyl alcohol (p < 0.05), but not better than acetone (p > 0.05) in removing the sealer from dentin. No significant differences were observed between acetone, 95% ethanol, and isopropyl alcohol (p > 0.05). It was concluded that amyl acetate and acetone may be good options for cleaning the pulp chamber after obturation with AH Plus. SCANNING 35:17-21, 2013. © 2012 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Resumo:
The soluble lipase from Pseudomonas fluorescens (PFL) forms bimolecular aggregates in which the hydrophobic active centers of the enzyme monomers are in close contact. This bimolecular aggregate could be immobilized by multipoint covalent linkages on glyoxyl supports at pH 8.5. The monomer of PFL obtained by incubation of the soluble enzyme in the presence of detergent (0.5% TRITON X-100) could not be immobilized under these conditions. The bimolecular aggregate has two amino terminal residues in the same plane. A further incubation of the immobilized derivative under more alkaline conditions (e.g., pH 10.5) allows a further multipoint attachment of lysine (Lys) residues located in the same plane as the amino terminal residues. Monomeric PFL was immobilized at pH 10.5 in the presence of 0.5% TRITON X-100. The properties of both PFL derivatives were compared. In general, the bimolecular derivatives were more active, more selective and more stable both in water and in organic solvents than the monomolecular ones. The bimolecular derivative showed twice the activity and a much higher selectivity (100 versus 20) for the hydrolysis of R,S-2-hydroxy-4-phenylbutyric acid ethyl ester (HPBEt) in aqueous media at pH 5.0 compared to the monomeric derivative. In experiments measuring thermal inactivation at 75 °C, the bimolecular derivative was 5-fold more stable than the monomeric derivative (and 50-fold more stable than a one-point covalently immobilized PFL derivative), and it had a half-life greater than 4 h. In organic solvents (cyclohexane and tert-amyl alcohol), the bimolecular derivative was much more stable and more active than the monomeric derivative in catalyzing the transesterification of olive oil with benzyl alcohol. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper we investigated the effect of adsorbed PVA on Pt electrodes on classic electrochemical processes such as hydrogen UPD, oxygen reduction and CO electro-oxidation. Upon adsorption PVA blocks roughly 50% of the hydrogen sites and can not be removed from the Pt surface through cycling in the potential range of 0.05-1.0 V vs. RHE. Potentiodynamic experiments under controlled hydrodynamic conditions provided by rotating disk electrode experiments showed a negative impact of the adsorbed PVA on the oxygen reduction reaction (ORR). Cyclic-voltammetry results revealed that not even CO was able to remove PVA from the Pt surface. Regarding the oxidation of CO, the adsorbed polymer positively shifted the CO oxidation peak potential, therefore higher potentials are required to free the Pt surface from CO poisoning. In situ Fourier transform infrared spectroscopy evidenced that the presence of PVA shifted the linearly bound CO frequency toward higher wavenumbers, a process found to be independent of the Pt surface orientation. In situ electrochemical X-ray absorption spectroscopy results showed that PVA also impacted the electronic properties of platinum by decreasing the occupancy of the Pt conducting 5d band. Our findings clearly support the efforts toward understanding the nature of the interaction between polymers and metallic surfaces as well as the impact on technological applications (e.g. in PEMFCs). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The results of the histopathological analyses after the implantation of highly crystalline PVA microspheres in subcutaneous tissues of Wistar rats are here in reported. Three different groups of PVA microparticles were systematically studied: highly crystalline, amorphous, and commercial ones. In addition to these experiments, complementary analyses of architectural complexity were performed using fractal dimension (FD), and Shannon's entropy (SE) concepts. The highly crystalline microspheres induced inflammatory reactions similar to the ones observed for the commercial ones, while the inflammatory reactions caused by the amorphous ones were less intense. Statistical analyses of the subcutaneous tissues of Wistar rats implanted with the highly crystalline microspheres resulted in FD and SE values significantly higher than the statistical parameters observed for the amorphous ones. The FD and SE parameters obtained for the subcutaneous tissues of Wistar rats implanted with crystalline and commercial microparticles were statistically similar. Briefly, the results indicated that the new highly crystalline microspheres had biocompatible behavior comparable to the commercial ones. In addition, statistical tools such as FD and SE analyses when combined with histopathological analyses can be useful tools to investigate the architectural complexity tissues caused by complex inflammatory reactions. © 2012 WILEY PERIODICALS, INC.
Resumo:
Processing of the YMn2O5 powder is very challenging, since it decomposes to YMnO3 and Mn3O4 at temperatures close to 1180 °C, while samples consolidation commonly demands high temperatures. The main goal of this work is to investigate a possibility to prepare thick films of YMn2O5, since their deposition generally requires significantly lower temperatures. Multiferroic YMn 2O5 was synthesized by the hydrothermal method from Y(CH3COO)3·xH2O, Mn(CH 3COO)2·4H2O and KMnO4 precursors. XRD, FE-SEM and TEM analysis showed that the obtained powder was monophasic, with orthorhombic crystal structure and columnar particle shape with mean diameter and length of around 20 and 50 nm, respectively. The obtained powder was suspended in isopropyl alcohol with addition of appropriate binder and deflocculant. This suspension was used for electrophoretic deposition of YMn2O5 thick films under the high-voltage conditions and electric fields ranging from 250 to 2125 V/cm. The films obtained at 1000 V/cm and higher electric fields showed good adhesion, particle packing, homogeneity and very low porosity. It was shown that the deposition in extremely high electric fields (KC=2125 V/cm) can influence the crystal orientation of the films, resulting in formation of preferentially oriented films. © 2012 Elsevier Ltd and Techna Group S.r.l.