334 resultados para HADRON COLLIDERS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We describe the derivation of an effective Hamiltonian which involves explicit hadron degrees of freedom and consistently combines chiral symmetry and color confinement. We use a method known as Fock-Tani (FT) representation and a quark model formulated in the context of Coulomb gauge QCD. Using this Hamiltonian, we evaluate the dissociation cross section of J/psi in collision with rho.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We briefly discuss four different possible types of transitions from quark to hadronic matter and their characteristic signatures in terms of correlations. We also highlight the effects arising from mass modification of hadrons in hot and dense hadronic matter, as well as their quantum statistical consequences: the appearance of squeezed quantum states and the associated experimental signatures, i.e., the back-to-back correlations of particle-antiparticle pairs. We briefly review the theoretical results of these squeezed quanta, generated by in-medium modified masses, starting from the first indication of the existence of surprising particle-antiparticle correlations, and ending by considering the effects of chiral dynamics on these correlation patterns. Nevertheless, a prerequisite for such a signature is the experimental verification of its observability. Therefore, the experimental observation of back-to-back correlations in high energy heavy ion reactions would be a unique signature, proving the existence of in-medium mass modification of hadronic states. on the other hand, their disappearance at some threshold centrality or collision energy would indicate that the hadron formation mechanism would have qualitatively changed: asymptotic hadrons above such a threshold are not formed from medium modified hadrons anymore, but rather by new degrees of freedom characterizing the medium. Furthermore, the disappearance of the squeezed BBC could also serve as a signature of a sudden, non-equilibrium hadronization scenario from a supercooled quark-gluon plasma phase.
Resumo:
We study the associated production of Z and standard model Higgs bosons in high energy gamma gamma collisions with the photons originating from Compton laser backscattering. According to our results, within the framework of the standard model, this process will give rise only to very few events for a yearly integrated luminosity of 10 fb(-1), even at very high energies.
Resumo:
We study the production of three gauge bosons (W(+)W(-)Z(0) and W(+)W(-)gamma) at the next generation of linear e(+)e(-) colliders operating in the yy mode. We analyze the total cross sections as well as several kinematical distributions of the final state particles. We find out that a linear e(+)e(-) machine operating in the rr mode will produce 5-10 times more three-gauge-boson states compared to the standard e(+)e(-) mode at high energies.
Resumo:
Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions.
Resumo:
The models of translationally invariant infinite nuclear matter in the relativistic mean field models are very interesting and simple, since the nucleon can connect only to a constant vector and scalar meson field. Can one connect these to the complicated phase transitions of QCD? For an affirmative answer to this question, one must consider models where the coupling contstants to the scalar and vector fields depend on density in a nonlinear way, since as such the models are not explicitly chirally invariant. Once this is ensured, indeed one can derive a quark condensate indirectly from the energy density of nuclear matter which goes to zero at large density and temperature. The change to zero condensate indicates a smooth phase transition. © Springer-Verlag 1996.
Resumo:
We discuss signals for CP violation in μ + μ - → Τ̃ i - Τ̃ j +, where i, j = 1, 2 label the two scalar Τ mass eigenstates. We assume that these reactions can proceed through the production and decay of the heavy neutral Higgs bosons present in supersymmetric models. CP violation in the Higgs sector can be probed through a rate asymmetry even with unpolarized beams, while the CP-odd phase associated with the Τ̃ mass matrix can be probed only if the polarization of at least one beam can be varied. These asymmetries might be O (1).
Resumo:
We examine the potentiality of both CERN LEP and Fermilab Tevatron colliders to establish bounds on new couplings involving the bosonic sector of the standard model. We pay particular attention to the anomalous Higgs interactions with γ, W±, and Z0. A combined exclusion plot for the coefficients of different anomalous operators is presented. The sensitivity that can be achieved at the Next Linear Collider and at the upgraded Tevatron is briefly discussed. ©1999 The American Physical Society.