37 resultados para Gradient artérioveineux
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Our understanding of how anthropogenic habitat change shapes species interactions is in its infancy. This is in large part because analytical approaches such as network theory have only recently been applied to characterize complex community dynamics. Network models are a powerful tool for quantifying how ecological interactions are affected by habitat modification because they provide metrics that quantify community structure and function. Here, we examine how large-scale habitat alteration has affected ecological interactions among mixed-species flocking birds in Amazonian rainforest. These flocks provide a model system for investigating how habitat heterogeneity influences non-trophic interactions and the subsequent social structure of forest-dependent mixed-species bird flocks. We analyse 21 flock interaction networks throughout a mosaic of primary forest, fragments of varying sizes and secondary forest (SF) at the Biological Dynamics of Forest Fragments Project in central Amazonian Brazil. Habitat type had a strong effect on network structure at the levels of both species and flock. Frequency of associations among species, as summarized by weighted degree, declined with increasing levels of forest fragmentation and SF. At the flock level, clustering coefficients and overall attendance positively correlated with mean vegetation height, indicating a strong effect of habitat structure on flock cohesion and stability. Prior research has shown that trophic interactions are often resilient to large-scale changes in habitat structure because species are ecologically redundant. By contrast, our results suggest that behavioural interactions and the structure of non-trophic networks are highly sensitive to environmental change. Thus, a more nuanced, system-by-system approach may be needed when thinking about the resiliency of ecological networks.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In general, the studies of finite size effects in mesoscopic superconductors have been carried out in such a way that the temperature parameter is constant in the entire system. However, we could have situations where a real sample is near a heater source, as an example. In such situations, gradients of temperature are present. On the other hand, mesoscopic superconductors are interesting systems due to the fact that they present confinement effects which influence all the vortex dynamics. Thus, in this work we studied the influence of thermal gradients on the vortex dynamics in mesoscopic superconductors. For this purposes, we used the time dependent Ginzburg-Landau equations. The thermal gradients produce an asymmetric distribution of the currents around the system which, in turn, yield interesting vortex configurations and difficult the formation of giant vortices.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)