47 resultados para Galois Cohomology
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Vertex operators in string theory me in two varieties: integrated and unintegrated. Understanding both types is important for the calculation of the string theory amplitudes. The relation between them is a descent procedure typically involving the b-ghost. In the pure spinor formalism vertex operators can be identified as cohomology classes of an infinite-dimensional Lie superalgebra formed by covariant derivatives. We show that in this language the construction of the integrated vertex from an unintegrated vertex is very straightforward, and amounts to the evaluation of the cocycle on the generalized Lax currents.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Construction techniques with ruler and the compasses, fundamental on Euclidean geometry, have been related to modern algebraic theories such as solving equations and extension of bodies from the works by Paolo Ruffini (1765-1822), Niels Henrik Abel (1802-1829) and Evariste Galois (1811-1832). This relation could provide an answer to some famous problems, from ancient Greece, such as doubling the cube, the trisection Angle, the Quadrature of the Circle and the construction of regular polygons, which remained unsolved for over two thousand years. Also important for our purposes are the notions of algebraic numbers, transcendental and the criteria for constructability, of those numbers. The objective of this study is to reconstruct relevant steps of geometric constructions with ruler (unmarked) and the compasses, from the elementary to the outcome buildings, in the nineteenth century, considering those mentioned problems.
Resumo:
In this paper, we present a new construction and decoding of BCH codes over certain rings. Thus, for a nonnegative integer t, let A0 ⊂ A1 ⊂···⊂ At−1 ⊂ At be a chain of unitary commutative rings, where each Ai is constructed by the direct product of appropriate Galois rings, and its projection to the fields is K0 ⊂ K1 ⊂···⊂ Kt−1 ⊂ Kt (another chain of unitary commutative rings), where each Ki is made by the direct product of corresponding residue fields of given Galois rings. Also, A∗ i and K∗ i are the groups of units of Ai and Ki, respectively. This correspondence presents a construction technique of generator polynomials of the sequence of Bose, Chaudhuri, and Hocquenghem (BCH) codes possessing entries from A∗ i and K∗ i for each i, where 0 ≤ i ≤ t. By the construction of BCH codes, we are confined to get the best code rate and error correction capability; however, the proposed contribution offers a choice to opt a worthy BCH code concerning code rate and error correction capability. In the second phase, we extend the modified Berlekamp-Massey algorithm for the above chains of unitary commutative local rings in such a way that the error will be corrected of the sequences of codewords from the sequences of BCH codes at once. This process is not much different than the original one, but it deals a sequence of codewords from the sequence of codes over the chain of Galois rings.
Resumo:
Um código BCH C (respectivamente, um código BCH C 0 ) de comprimento n sobre o anel local Zp k (respectivamente, sobre o corpo Zp) é um ideal no anel Zpk [X] (Xn−1) (respectivamente, no anel Zp[X] (Xn−1) ), que ´e gerado por um polinômio mônico que divide Xn−1. Shankar [1] mostrou que as raízes de Xn−1 são as unidades do anel de Galois GR(p k , s) (respectivamente, corpo de Galois GF(p, s)) que é uma extensão do anel Zp k (respectivamente, do corpo Zp), onde s é o grau de um polinômio irredutível f(X) ∈ Zp k [X]. Neste estudo, assumimos que para si = b i , onde b é um primo e i é um inteiro não negativo tal que 0 ≤ i ≤ t, existem extensões de anéis de Galois correspondentes GR(p k , si) (respectivamente, extensões do corpo de Galois GF(p, si)) do anel Zp k (respectivamente, do corpo Zp). Assim, si = b i para i = 2 ou si = b i para i > 2. De modo análogo a [1], neste trabalho, apresentamos uma sequência de códigos BCH C0, C1, · · · , Ct−1C sobre Zp k de comprimentos n0, n1, · · · , nt−1, nt , e uma sequência de códigos BCH C 0 0 , C0 1 , · · · , C0 t−1 , C0 sobre Zp de comprimentos n0, n1, · · · , nt−1, nt , onde cada ni divide p si − 1. Palavras Chave: Anel de Galois, corpo de Galois, código BCH.
Resumo:
In this paper we present matrices over unitary finite commutative local rings connected through an ascending chain of containments, whose elements are units of the corresponding rings in the chain such that the McCoy ranks are the largest ones.
Resumo:
For a positive integer $t$, let \begin{equation*} \begin{array}{ccccccccc} (\mathcal{A}_{0},\mathcal{M}_{0}) & \subseteq & (\mathcal{A}_{1},\mathcal{M}_{1}) & \subseteq & & \subseteq & (\mathcal{A}_{t-1},\mathcal{M}_{t-1}) & \subseteq & (\mathcal{A},\mathcal{M}) \\ \cap & & \cap & & & & \cap & & \cap \\ (\mathcal{R}_{0},\mathcal{M}_{0}^{2}) & & (\mathcal{R}_{1},\mathcal{M}_{1}^{2}) & & & & (\mathcal{R}_{t-1},\mathcal{M}_{t-1}^{2}) & & (\mathcal{R},\mathcal{M}^{2}) \end{array} \end{equation*} be a chain of unitary local commutative rings $(\mathcal{A}_{i},\mathcal{M}_{i})$ with their corresponding Galois ring extensions $(\mathcal{R}_{i},\mathcal{M}_{i}^{2})$, for $i=0,1,\cdots,t$. In this paper, we have given a construction technique of the cyclic, BCH, alternant, Goppa and Srivastava codes over these rings. Though, initially in \cite{AP} it is for local ring $(\mathcal{A},\mathcal{M})$, in this paper, this new approach have given a choice in selection of most suitable code in error corrections and code rate perspectives.
Resumo:
Let G be a group, W a nonempty G-set and M a Z2G-module. Consider the restriction map resG W : H1(G,M) → Pi wi∈E H1(Gwi,M), [f] → (resGG wi [f])i∈I , where E = {wi, i ∈ I} is a set of orbit representatives in W and Gwi = {g ∈ G | gwi = wi} is the G-stabilizer subgroup (or isotropy subgroup) of wi, for each wi ∈ E. In this work we analyze some results presented in Andrade et al [5] about splittings and duality of groups, using the point of view of Dicks and Dunwoody [10] and the invariant E'(G,W) := 1+dimkerresG W, defined when Gwi is a subgroup of infinite index in G for all wi in E, andM = Z2 (where dim = dimZ2). We observe that the theory of splittings of groups (amalgamated free product and HNN-groups) is inserted in the combinatory theory of groups which has many applications in graph theory (see, for example, Serre [12] and Dicks and Dunwoody [10]).
Resumo:
Based on the cohomology theory of groups, Andrade and Fanti defined in [1] an algebraic invariant, denoted by E(G,S, M), where G is a group, S is a family of subgroups of G with infinite index and M is a Z2G-module. In this work, by using the homology theory of groups instead of cohomology theory, we define an invariant ``dual'' to E(G, S, M), which we denote by E*(G, S, M). The purpose of this paper is, through the invariant E*(G, S, M), to obtain some results and applications in the theory of duality groups and group pairs, similar to those shown in Andrade and Fanti [2], and thus, providing an alternative way to get applications and properties of this theory.
Resumo:
This paper presents the design of a high-speed coprocessor for Elliptic Curve Cryptography over binary Galois Field (ECC- GF(2m)). The purpose of our coprocessor is to accelerate the scalar multiplication performed over elliptic curve points represented by affine coordinates in polynomial basis. Our method consists of using elliptic curve parameters over GF(2163) in accordance with international security requirements to implement a bit-parallel coprocessor on field-programmable gate-array (FPGA). Our coprocessor performs modular inversion by using a process based on the Stein's algorithm. Results are presented and compared to results of other related works. We conclude that our coprocessor is suitable for comparing with any other ECC-hardware proposal, since its speed is comparable to projective coordinate designs.
Resumo:
The goal of this work is find a description for fields of two power conductor. By the Kronecker-Weber theorem, these amounts to find the subfields of cyclotomic field $\mathbb{Q}(\xi_{2^r})$, where $\xi_{2^r}$ is a $2^r$-th primitive root of unit and $r$ a positive integer. In this case, the cyclotomic extension isn't cyclic, however its Galois group is generated by two elements and the subfield can be expressed by $\mathbb{Q}(\theta)$ for a $\theta\in\mathbb{Q}(\xi_{2^r})$ convenient.
Resumo:
We clarify the structure of the Hilbert space of curved βγ systems defined by a quadratic constraint. The constraint is studied using intrinsic and BRST methods, and their partition functions are shown to agree. The quantum BRST cohomology is non-empty only at ghost numbers 0 and 1, and there is a one-to-one mapping between these two sectors. In the intrinsic description, the ghost number 1 operators correspond to the ones that are not globally defined on the constrained surface. Extension of the results to the pure spinor superstring is discussed in a separate work.