102 resultados para Frequency range selection
Resumo:
In the present paper, the ionic conductivity and the dielectric relaxation properties on the poly(vinyl alcohol)-CF(3)COONH(4) polymer system have been investigated by means of impedance spectroscopy measurements over wide ranges of frequencies and temperatures. The electrolyte samples were prepared by solution casting technique. The temperature dependence of the sample's conductivity was modeled by Arrhenius and Vogel-Tammann-Fulcher (VTF) equations. The highest conductivity of the electrolyte of 3.41x10 (-aEuro parts per thousand 3) (Omega cm) (-aEuro parts per thousand 1) was obtained at 423 K. For these polymer system two relaxation processes are revealed in the frequency range and temperature interval of the measurements. One is the glass transition relaxation (alpha-relaxation) of the amorphous region at about 353 K and the other is the relaxation associated with the crystalline region at about 423 K. Dielectric relaxation has been studied using the complex electric modulus formalism. It has been observed that the conductivity relaxation in this polymer system is highly non-exponential. From the electric modulus formalism, it is concluded that the electrical relaxation mechanism is independent of temperature for the two relaxation processes, but is dependent on composition.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Wind-excited vibrations in the frequency range of 10 to 50 Hz due to vortex shedding often cause fatigue failures in the cables of overhead transmission lines. Damping devices, such as the Stockbridge dampers, have been in use for a long time for supressing these vibrations. The dampers are conveniently modelled by means of their driving point impedance, measured in the lab over the frequency range under consideration. The cables can be modelled as strings with additional small bending stiffness. The main problem in modelling the vibrations does however lay in the aerodynamic forces, which usually are approximated by the forces acting on a rigid cylinder in planar flow. In the present paper, the wind forces are represented by stochastic processes with arbitrary crosscorrelation in space; the case of a Kármán vortex street on a rigid cylinder in planar flow is contained as a limit case in this approach. The authors believe that this new view of the problem may yield useful results, particularly also concerning the reliability of the lines and the probability of fatigue damages. © 1987.
Resumo:
Different measurements were performed in cross-linked polyethylene (XLPE) employed as insulating material in coaxial cables that were field-aged and laboratory-aged under multi-stressing conditions at room temperature. Samples were peeled from the XLPE cable insulation in three different positions: just below the external semiconductor layer (outer layer), in the middle (middle layer) and just above the internal semiconductor layer of the cable (inner layer). The imaginary part of the electric susceptibility showed three peaks that obey the Dissado-Hill model. For laboratory-aged XLPE samples peeled from the inner and from the middle positions the peak at very low frequency region increased while in samples from the outer position a quasi-DC conduction process was observed. In medium frequency range a broadening of the peak was observed for all samples. Viscoelastic properties determined through dynamic mechanical analysis suggested that the aging generates processes that promoted changes of the crystallinity and the cross-linking degrees of the polymer. Fourier transform infrared spectroscopy (FTIR) measurements revealed an increase of oxidation products (esters), evidence of polar residues of the bow-tie tree and the presence of cross-linking by-products (acetophenone). Optical and scanning electronic microscope (SEM) measurements in aged samples revealed the existence of voids and bow-tie trees that were formed during aging in the middle region of the cable.
Resumo:
One of the great challenges of structural dynamics is to ally structures lighther and stronger. The great difficulty is that light systems, in general, have a low inherent damping. Besides, they contain resonance frequencies in the low frequency range. So, any external disturbance can excite the system in some resonance and the resulting effect can be drastic. The methodologies of active damping, with control algorithms and piezoelectric sensors and actuators coupled in a base structure, are attractive in current days, in order to overcome the contradictory features of these requeriments. In this sense, this article contributes with a bibliographical review of the literature on the importance of active noise and vibration control in engineering applications, models of smart structures, techniques of optimal placement of piezoelectric sensors and actuators and methodologies of structural active control. Finally, it is discussed the future perspectives in this area.
Resumo:
This paper presents a new approach for damage detection in structural health monitoring systems exploiting the coherence function between the signals from PZT (Lead Zirconate Titanate) transducers bonded to a host structure. The physical configuration of this new approach is similar to the configuration used in Lamb wave based methods, but the analysis and operation are different. A PZT excited by a signal with a wide frequency range acts as an actuator and others PZTs are used as sensors to receive the signal. The coherences between the signals from the PZT sensors are obtained and the standard deviation for each coherence function is computed. It is demonstrated through experimental results that the standard deviation of the coherence between the signals from the PZTs in healthy and damaged conditions is a very sensitive metric index to detect damage. Tests were carried out on an aluminum plate and the results show that the proposed methodology could be an excellent approach for structural health monitoring (SHM) applications.
Resumo:
In this paper, the susceptibility of a current-mode bandgap voltage reference to electromagnetic interference (EMI) superimposed to the power supply is investigated by simulation. Designed for AMS 0.35 CMOS process, the circuit provides a stable voltage reference in the temperature range of -40-150°C. When EMI disturbances are present, the circuit exhibits only 6.7 mV of offset for interfering signals in the frequency range of 150 kHz-1 GHz. © 2011 ACM.
Resumo:
A nonlinear spring element of a vibration isolator should ideally possess high static and low dynamic stiffness. A buckled beam may be a good candidate to fulfil this requirement provided its internal resonance frequencies are high enough to achieve a wide frequency range of isolation. If a straight beam is used, there is a singularity in the force-displacement characteristic. To smooth this characteristic and eliminate the singularity at the buckling point, beams with initial constant curvature along their length are investigated here as an alternative to the buckled straight beam. Their force displacement characteristics are compared with different initial curvature and with a straight buckled beam. The minimum achievable dynamic stiffness with its corresponding static stiffness is compared for different initial curvatures. A case study is considered where the beams are optimized to isolate a one kilogram mass and to achieve a natural frequency of 1 Hz, considering small amplitudes of vibration. Resonance frequencies of the optimized beams for different curvature are presented. It is shown that an order of magnitude reduction in stiffness compared with a linear spring is achievable, while the internal resonance frequencies of the curved beam are high enough to achieve an acceptable frequency range of isolation.
Resumo:
This paper presents a method for analyzing electromagnetic transients using real transformation matrices in three-phase systems considering the presence of ground wires. So, for the Z and Y matrices that represent the transmission line, the characteristics of ground wires are not implied in the values related to the phases. A first approach uses a real transformation matrix for the entire frequency range considered in this case. This transformation matrix is an approximation to the exact transformation matrix. For those elements related to the phases of the considered system, the transformation matrix is composed of the elements of Clarke's matrix. In part related to the ground wires, the elements of the transformation matrix must establish a relationship with the elements of the phases considering the establishment of a single homopolar reference in the mode domain. In the case of three-phase lines with the presence of two ground wires, it is unable to get the full diagonalization of the matrices Z and Y in the mode domain. This leads to the second proposal for the composition of real transformation matrix: obtain such transformation matrix from the multiplication of two real and constant matrices. In this case, the inclusion of a second matrix had the objective to minimize errors from the first proposal for the composition of the transformation matrix mentioned. © 2012 IEEE.
Resumo:
Aim: To evaluate the sound pressure level to which preschool students are exposed. Method: This was a prospective, quantitative, nonexperimental, and descriptive study. To achieve the aim of the study we used an audio dosimeter. The sound pressure level (SPL) measurements were obtained for 2 age based classrooms. Preschool I and II. The measurements were obtained over 4 days in 8-hour sessions, totaling 1920 minutes. Results: Compared with established standards, the SPL measured ranged from 40.6 dB (A) to 105.8 dB (A). The frequency spectrum of the SPL was concentrated in the frequency range between 500 Hz and 4000 Hz. The older children produced higher SPLs than the younger ones, and the levels varied according to the activity performed. Painting and writing were the quietest activities, while free activities period and games were the noisiest. Conclusion: The SPLs measured at the preschool were higher and exceeded the maximum permitted level according to the reference standards. Therefore, the implementation of actions that aim to minimize the negative impact of noise in this environment is essential.
Projeto de uma referência de tensão com baixa susceptibilidade a interferência eletromagnética (EMI)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)