76 resultados para Freezing points.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The lunar sphere of influence, whose radius is some 66,300 km, has regions of stable orbits around the Moon and also regions that contain trajectories which, after spending some time around the Moon, escape and are later recaptured by lunar gravity. Both the escape and the capture occur along the Lagrangian equilibrium points L1 and L2. In this study, we mapped out the region of lunar influence considering the restricted three-body Earth-Moon-particle problem and the four-body Sun-Earth-Moon-particle (probe) problem. We identified the stable trajectories, and the escape and capture trajectories through the L I and L2 in plots of the eccentricity versus the semi-major axis as a function of the time that the energy of the osculating lunar trajectory in the two-body Moon-particle problem remains negative. We also investigated the properties of these routes, giving special attention to the fact that they supply a natural mechanism for performing low-energy transfers between the Earth and the Moon, and can thus be useful on a great number of future missions. (C) 2007 Published by Elsevier Ltd on behalf of COSPAR.
Resumo:
The freezing point depression (FPD) of orange juice at different concentrations was measured by using a simple apparatus. Results showed that the initial freezing point decreased approximately 90% with the increase of juice concentration between 46degrees and 66degrees Brix (water content respectively between 52.8 and 32.8% w/w). The thermal conductivity of orange juice as a function of fluid concentration was also investigated by using a coaxial dual-cylinder apparatus. Below the freezing point, the thermal conductivity was strongly affected by both the orange juice concentration and temperature. Simple equations in terms of water content and temperature could be adjusted to experimental data of FPD and thermal conductivity.
Resumo:
In the 1980s D. Eisenbud and J. Harris posed the following question: What are the limits of Weierstrass points in families of curves degenerating to stable curves not of compact type? In the present article, we give a partial answer to this question. We consider the case where the limit curve has components intersecting at points in general position and where the degeneration occurs along a general direction. For this case we compute the limits of Weierstrass points of any order. However, for the usual Weierstrass points, of order one, we need to suppose that all of the components of the limit curve intersect each other.
Resumo:
In the present work we analyse the behaviour of a particle under the gravitational influence of two massive bodies and a particular dissipative force. The circular restricted three body problem, which describes the motion of this particle, has five equilibrium points in the frame which rotates with the same angular velocity as the massive bodies: two equilateral stable points (L-4, L-5) and three colinear unstable points (L-1, L-2, L-3). A particular solution for this problem is a stable orbital libration, called a tadpole orbit, around the equilateral points. The inclusion of a particular dissipative force can alter this configuration. We investigated the orbital behaviour of a particle initially located near L4 or L5 under the perturbation of a satellite and the Poynting-Robertson drag. This is an example of breakdown of quasi-periodic motion about an elliptic point of an area-preserving map under the action of dissipation. Our results show that the effect of this dissipative force is more pronounced when the mass of the satellite and/or the size of the particle decrease, leading to chaotic, although confined, orbits. From the maximum Lyapunov Characteristic Exponent a final value of gamma was computed after a time span of 10(6) orbital periods of the satellite. This result enables us to obtain a critical value of log y beyond which the orbit of the particle will be unstable, leaving the tadpole behaviour. For particles initially located near L4, the critical value of log gamma is -4.07 and for those particles located near L-5 the critical value of log gamma is -3.96. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We show that if a gauge theory with dynamical symmetry breaking has nontrivial fixed points, they will correspond to extrema of the vacuum energy. This relationship provides a different method to determine fixed points.
Resumo:
We support the idea that the baryon, B with mass MB, couples to its current with a coupling λ2 B ∼ 0.71 M6 B from an analysis of magnetic moment sum rules. And we find a sum rule among the experimental magnetic moments which is independent of the parameters of QCDSR. © 1998 Elsevier Science B.V. All rights reserved.