152 resultados para Free Vibration Analysis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FMVZ

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Among all predictive maintenance techniques the oil analysis and vibration analysis are the most important for monitoring some mechanical systems. The integration of these techniques has potential to improve industrial maintenance practices and provide a better economic gain for industries. To study the integration of these two techniques, a test rig was set up to obtain an extreme working condition for the worm reducer used in this paper. The test rig was composed by a motor connected to a reducer through a flexible coupling and with an unbalanced load. The analysis of the results carried out by using a sample of the oil recommended by the manufacturer in extreme conditions, and using liquid contaminant is presented. From the results it was observed that if there is an abnormal instantaneous load in a system, the subsequent vibration analysis may not perceive what occurred if there was no permanent damage, which is not the case with the lubricant analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aims to analyze the feasibility of using predictive techniques like thermography, vibration analysis, eddy current, liquid penetrant, visual examination and ultrasound in equipment as batch reactors of the type used in a biodiesel production company. This study is based on: analysis of the practices of corrective and preventive maintenance commonly adopted in the company in question, the cost and time spent for such activities and the potential savings and revenue generation that can be after implementation of these techniques on the analysis of maintenance current

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Revolving machines are among the most used equipment in general industry and therefore expenditures on this equipment class are a significant portion of the total amount spent by the company. If there is an unscheduled stop of some of this equipment, industrial plants can lose huge amounts of money caused by interrupted production and parts delay. Others may increase significantly maintenance costs due to consequences elsewhere not affected before. Even plant and people safety can be in danger if there is an operation interruption without a backup system start. This work is focused on a rotating system case study which is monitored by vibration analysis that shows that is possible to determine when is the most appropriate time for equipment intervention without any reliability loss just by using a simple and cheap system which is not much used because professionals are not aware to its utility. Industrial facilities were evaluated by fail detection and historical analysis in some equipment in order to show feasibility of vibration analysis through a before-during-after process. The plant evaluated is part of a chemical multinational located in Guaratinguetá-SP. At this time, that plant had around 650 critical equipment monthly monitored and no unscheduled shutdown was registered in one year period due to equipment monitoring

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity detection in interferometric sensors, as it can provide an output signal that is immune to interferometric drift. With the advent of cost-effective, high-speed real-time signal-processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In synthetic heterodyne, to obtain the actual dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a method is described for determining the former and setting the Bessel function argument to a set value, which ensures maximum sensitivity. Conventional synthetic-heterodyne demodulation requires the use of two in-phase local oscillators; however, the relative phase of these oscillators relative to the interferometric signal is unknown. It is shown that, by using two additional quadrature local oscillators, a demodulated signal can be obtained that is independent of this phase difference. The experimental interferometer is aMichelson configuration using a visible single-mode laser, whose current is sinusoidally modulated at a frequency of 20 kHz. The detected interferometer output is acquired using a 250 kHz analog-to-digital converter and processed in real time. The system is used to measure the displacement sensitivity frequency response and linearity of a piezoelectric mirror shifter over a range of 500 Hz to 10 kHz. The experimental results show good agreement with two data-obtained independent techniques: the signal coincidence and denominated n-commuted Pernick method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to obtain the quantum-mechanical properties of layered semicondutor structures (quantum well and superlattice structures, for instance), solutions of the Schrodinger equation should be obtained for arbitrary potential profiles. In this paper, it is shown that such problems may be also studied by the Element Free Galerkin Method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An excitation force that is not influenced by the system state is said to be an ideal energy source. In real situations, a direct and feedback coupling between the excitation source and the system must always exist at a certain level. This manifestation of the law of conservation of energy is known as the Sommerfeld effect. In the case of obtaining a mathematical model for such a system, additional equations are usually necessary to describe the vibration sources with limited power and its coupling with the mechanical system. In this work, a cantilever beam and a non-ideal DC motor fixed to its free end are analyzed. The motor has an unbalanced mass that provides excitation to the system which is proportional to the current applied to the motor. During the coast up operation of the motor, if the drive power is increased slowly, making the excitation frequency pass through the first natural frequency of the beam, the DC motor speed will remain the same until it suddenly jumps to a much higher value (simultaneously its amplitude jumps to a much lower value) upon exceeding a critical input power. It was found that the Sommerfeld effect depends on some system parameters and the motor operational procedures. These parameters are explored to avoid the resonance capture in the Sommerfeld effect. Numerical simulations and experimental tests are used to help gather insight of this dynamic behavior. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)