133 resultados para Forage plants.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Agricultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The system consortium of grain crops with forage plants allows the establishment of pastures resistant, vigorous and lower cost in areas infested with stink bug brown root. Maize has favorable characteristics for intercropping as high plant height and insertion height of the studs, allowing the crop to occur without interference of forage plants. Furthermore, the production system in consortium with Bt corn reduced the infestation of Spodoptera frugiperda and was not affected by Scaptocoris carvalhoi (Hemiptera: Cydnidae), The Panicum maximum cv. Massai allowed a consortium with excellent corn and pasture provided a vigorous and excellent leaf mass distribution and very deep roots in the soil. Grain yield for Bt corn was higher and significant (P <0.05), compared to other treatments. The use of Lorsban (1.5 liters / ha) and Thiodan (2.0 liters / ha) was highly effective (P <0.05) in the control of Spodoptera frugiperda and Scaptocoris carvalhoi (Hemiptera: Cydnidae).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was carried out at Campo Experimental do Cerrado in Embrapa Amapá, Brazil, aiming to select, based on the agronomic characteristics of productivity, dry matter and nutritional quality of the forage, the accesses of species from the genus Paspalum that possess potentiality of use as forage plants. During the years 2000, 2001 and 2002, 21 accesses of grasses were evaluated, including 18 of Paspalum and three control species: Brachiaria decumbens, Andropogon gayanus cv. Baetí and Brachiaria brizantha cv. Marandú. The experimental design was complete randomized block with three replications. The variables studied were: production of dry matter, neutral detergent fiber on the dry matter, in vitro digestibility of dry matter and crude protein content in the dry matter. All the accesses showed marked reduction in productivity and quality of produced forage, when the climatic conditions became unfavorable, showing that Paspalum as the other tropical grasses have high seasonal production. Based on the variables studied, the selected accesses were P. guenoarum (BRA-014851), P. atratum (BRA-9661) and Paspalum sp. (BRA- 009407).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Forage sorghum can be grown in areas and environmental conditions dry and warm, where the productivity of other forage plants can often be uneconomical. The soil disturbance can be made only on the lines of planting (direct seeding) or entirely from the area for seeding (conventional tillage), as plowing, harrowing, subsoiling and chiseling (minimum tillage). The displacement speed ideal for planting is one in which the groove is opened and closed without removing the over-ground, allowing the distribution of seed spacing and depth constant. The experiment was conducted in a soil classified as Typic Oxisol at Lageado Experimental Farm, Faculty of Agronomic Sciences, UNESP, Botucatu campus. This study aimed to evaluate the response of sorghum in four forward speeds (3, 5, 6 and 9 km h-1) and four systems of soil management: SD (direct seeding), GP (harrow + sowing), LPG (disc harrow and two light disking + sowing) and CR (scarification and seeding). Data was subjected to analysis of variance in a factorial 4 x 4 and a randomized block design with split plots. The following parameters were determined: average speed, average strength of the drawbar, the average power drawbar, theoretical field capacity of the tractor-equipment, fuel consumption per hour. For the conditions under which the experiment was conducted, it was concluded that the hourly fuel consumption was not influenced by tillage systems and was inversely proportional to the increase of speed work, and that the change of speed in the sowing operation did not provide additional the values of average traction force on the bar of the tractor-planter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Agricultura) - FCA

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The experiment was carried out on Cynodon spp cv. Tifton 85 pastures grazed by sheep under rotational stocking, with the objective of evaluating the structural characteristics as well as the forage mass of the pastures subjected to three grazing intensities in successive cycles. Treatments were composed of three residual leaf area indices (rLAI; 2.4; 1.6 and 0.8), allocated in completely randomized blocks with seven replications, totaling 21 experimental units. Tiller population density, pasture height, leaf area index, forage morphological composition and pasture forage mass were evaluated. The rLAI modified the tiller population density, which increased linearly with decrease in the rLAI of the pastures. Dry masses of leaf blade, stem and dead material were inferior when the rLAI imposed were lower, which resulted in differentiated forage production among the treatments. Tifton 85 pastures grazed by sheep in rotational stocking under tropical conditions with different rLAI show a modified sward structure over successive grazing cycles, mainly by alteration in the height and LAI of the plants at pre-grazing and by light interception post-grazing, which change the tiller population density. The residual leaf area index of 1.6 is the most suitable for pasture management for being equivalent to the heights of entrance and exit of animals on and from paddocks of 33 and 19 cm, respectively, which avoid great accumulation of dead material and excessive stem elongation, in addition to ensuring tillering in the sward.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intercropping corn (Zea mays L.) with forages, such as palisadegrass {Urochloa brizantha (Hochst. ex A. rich.) r. D. Webster [syn. Brachiaria brizantha (Hochst. ex A. rich.) Stapf]} or guineagrass [Megathyrsus maximus (Jacq.) B. K. Simon & S. W. L. Jacobs (syn. Panicum maximum Jacq.)], provides large amounts of biomass for use as straw in no-tillage systems or as pasture. However, it is important to evaluate what time these forages have to be sown into corn systems to avoid reductions in both corn and forage production. This study, conducted for three growing seasons at Botucatu, Brazil, evaluated nutrient concentration and yield of corn as affected by time of forage intercropped as well as forage's dry matter production. our data showed that intercropping systems did not reduce leaf nutrient concentrations and grain yield of corn in relation to sole corn. The simultaneous intercropping of corn and guineagrass resulted in the lowest plant population (51, 200 plant ha-1), number of ears per plant (1.0), and, consequently, the lowest corn grain yield (9801 kg ha-1). Guineagrass seeded at the time of corn fertilizer topdressing resulted in the highest plant population (59, 400 plants ha-1), number of ears per plant (1.2), and corn grain yield (12, 077 kg ha-1). Forage production was highest when intercrop was done simultaneously. palisadegrass could be intercropped with corn both simultaneously or at topdressing fertilization stage. In contrast, it is recommended that guineagrass should only be intercropped with corn at topdressingfertilization. © Crop Science Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sorghum is an excellent alternative to other grains in poor soil where corn does not develop very well, as well as in regions with warm and dry winters. Intercropping sorghum [Sorghum bicolor (L.) Moench] with forage crops, such as palisade grass [Brachiaria brizantha (Hochst. ex A. Rich) Stapf] or guinea grass (Panicum maximum Jacq.), provides large amounts of biomass for use as straw in no-tillage systems or as pasture. However, it is important to determine the appropriate time at which these forage crops have to be sown into sorghum systems to avoid reductions in both sorghum and forage production and to maximize the revenue of the cropping system. This study, conducted for three growing seasons at Botucatu in the State of São Paulo in Brazil, evaluated how nutrient concentration, yield components, sorghum grain yield, revenue, and forage crop dry matter production were affected by the timing of forage intercropping. The experimental design was a randomized complete block design. Intercropping systems were not found to cause reductions in the nutrient concentration in sorghum plants. The number of panicles per unit area of sorghum alone (133,600), intercropped sorghum and palisade grass (133,300) and intercropped sorghum and guinea grass (134,300) corresponded to sorghum grain yields of 5439, 5436 and 5566kgha-1, respectively. However, the number of panicles per unit area of intercropped sorghum and palisade grass (144,700) and intercropped sorghum and guinea grass (145,000) with topdressing of fertilizers for the sorghum resulted in the highest sorghum grain yields (6238 and 6127kgha-1 for intercropping with palisade grass and guinea grass, respectively). Forage production (8112, 10,972 and 13,193Mg ha-1 for the first, second and third cuts, respectively) was highest when sorghum and guinea grass were intercropped. The timing of intercropping is an important factor in sorghum grain yield and forage production. Palisade grass or guinea grass must be intercropped with sorghum with topdressing fertilization to achieve the highest sorghum grain yield, but this significantly reduces the forage production. Intercropping sorghum with guinea grass sown simultaneously yielded the highest revenue per ha (€ 1074.4), which was 2.4 times greater than the revenue achieved by sowing sorghum only. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sunflower is an annual dicotyledonous plant, herbaceous, erect and native of North America. It is thermo- and photo-insensitive, hence, can be grown round the year in sub-tropical and tropical countries. Only two spp. H. annuus and H. tuberosum are cultivated for food, remaining spp. are ornamentals, weeds and wild plants. However, H. annuus is allelopathic and inhibit the growth and development of other plants thus reducing their productivity. Much information is available about the allelopathic effects of sunflower crop on following crops in crop rotations. Although it is harmful to all crops, but, is less harmful to crops of Graminae family than other families. It seems that the harmful effects of sunflower in crop rotations are due to release and accumulation of root exudates during crop growth in soil. Soil incorporation of its fresh (green manure) or dry biomass in soil is inhibitory to both crops and weed spp. Several allelochemicals have been characterized from the H. annuus, which inhibit the seed germination and seedling growth of A. albus, A. viridis, Agropyron repens (Elymus repens), Ambrosia artemsiifolia, Avena fatua, Celosia crustata, Chenopodium album, Chloris barbara, Cynodon dactylon, D. sanguinalis, Dactyloctenium ageyptium, Digitaria ciliaris, Echinochloa crus-galli, Flaveria australasica, Parthenium hysterophorus, Portulaca oleracea, Sida spinosa, Trianthema portulacastrum, Veronica perisca the inhibitory effects of this crop may be used for weed management with less herbicides for sustainable agriculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)