95 resultados para Fluorescent In Situ Hybridization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random amplified polymorphic DNA molecular marker was utilized as a means of analyzing genetic variability in seven bat species: Molossus molossus, M. rufus, Eumops glaucinus, E. perotis, Myotis nigricans, Eptesicus furinalis, and Artibeus planirostris. The determination of genetic diversity was based on 741 bands produced by a 20-random primer set. Only eight bands were considered monomorphic to one species. The greatest number of bands and the most polymorphic condition were exhibited by M. molossus, followed by M. nigricans, A. planirostris, E. furinalis, E. glaucinus, M. rufus, and E. perotis. Nei's genetic diversity index in the seven species considering the 20 primers was not greater than 0.22, but some primers were capable of detecting values between 0.39 and 0.49. Nei's unbiased genetic distance values and the UPGMA clustering pattern show that M. molossus and M. rufus have a close genetic relationship, unlike that observed between E. perotis and E. glaucinus. The latter was clustered with A. planirostris and E. furinalis. The low values for genetic diversity and distance observed indicate a genetic conservatism in the seven species. The fluorescent in situ hybridization experiments did not confirm a monomorphic condition for the eight bands identified, demonstrating that the monomorphic bands obtained by random amplified polymorphic DNA are insufficient for the identification of bat species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of chromosomes in Oreochromis niloticus, as with most fish karyotyped to date, cannot be individually identified owing to their small size. As a first step in establishing a physical map for this important aquaculture species of tilapia we have analyzed the location of the vertebrate telomeric repeat sequence, (TTAGGG)n, in O. niloticus. Southern blot hybridization analysis and a Bal31 sensitivity assay confirm that the vertebrate telomeric repeat is indeed present at O. niloticus chromosomal ends with repeat tracts extending for 4-10 kb on chromosomal ends in erythrocytes. Fluorescent in situ hybridization revealed that (TTAGGG)n is found not only at telomeres, but also at two interstitial loci on chromosome 1. These data support the hypothesis that chromosome 1, which is significantly larger than all the other chromosomes in the karyotype, was produced by the fusion of three chromosomes and explain the overall reduction of chromosomal number from the ancestral teleost karyotype of 2n=48 to 2n=44 observed in tilapia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromatin organization in the holocentric chromosomes of three triatomines species was cytologically studied by fluorescent in situ hybridization with a 45S rDNA probe of Drosophila melanogaster to localize ribosomal genes. In Triatoma tibiamaculata, metaphases I showed telomeric highlights in a single, larger bivalent. In T. protacta, hybridization was detected in one of the telomeres of an autosomal chromosome. In T. platensis, there were highlights in a single, smaller chromosome (X chromosome). The results obtained did not agree with the expected localization of rDNA genes in the sex chromosomes of triatomines, as demonstrated by silver impregnation, and suggest that the chromosome reorganization that occurred in this group during evolution may be a more important mechanism involved in rDNA distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cichlids are important in the aquaculture and ornamental fish trade and are considered models for evolutionary biology. However, most studies of cichlids have investigated African species, and the South American cichlids remain poorly characterized. Studies in neotropical regions have focused almost exclusively on classical cytogenetic approaches without investigating physical chromosomal mapping of specific sequences. The aim of the present study is to investigate the genomic organization of species belonging to different tribes of the subfamily Cichlinae (Cichla monoculus, Astronotus ocellatus, Geophagus proximus, Acaronia nassa, Bujurquina peregrinabunda, Hoplarchus psittacus, Hypselecara coryphaenoides, Hypselecara temporalis, Caquetaia spectabilis, Uaru amphiacanthoides, Pterophyllum leopoldi, Pterophyllum scalare, and Symphysodon discus) and reexamine the karyotypic evolutionary patterns proposed for this group. Variations in some cytogenetic markers were observed, although no trends were found in terms of the increase, decrease, or maintenance of the basal diploid chromosome number 2n = 48 in the tribes. Several species were observed to have 18S rDNA genetic duplications, as well as multiple rDNA loci. In most of the taxa analyzed, the 5S rDNA was located in the interstitial region of a pair of homologous chromosomes, although variations from this pattern were observed. Interstitial telomere sites were also observed and appear to be involved in chromosomal rearrangement events and the accumulation of repeat-rich satellite DNA sequences. Our data demonstrated the karyotypic diversity that exists among neotropical cichlids, suggesting that most of this diversity is due to the repetitive sequences present in heterochromatic regions and that repeat sequences have greatly influenced the karyotypic evolution of these fishes. © 2012 Springer Science+Business Media B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Repetitive DNA sequences constitute a great portion of the genome of eukaryotes and are considered key components to comprehend evolutionary mechanisms and karyotypic differentiation. Aiming to contribute to the knowledge of chromosome structure and organization of some repetitive DNA classes in the fish genome, chromosomes of two allopatric populations of Astyanax bockmanni were analyzed using classic cytogenetics techniques and fluorescent in situ hybridization, with probes for ribosomal DNA sequences, histone DNA and transposable elements. These Astyanax populations showed the same diploid number (2n = 50), however with differences in chromosome morphology, distribution of constitutive heterochromatin, and location of 18S rDNA and retroelement Rex3 sites. In contrast, sites for 5S rDNA and H1, H3 and H4 histones showed to be co-located and highly conserved. Our results indicate that dispersion and variability of 18S rDNA and heterochromatin sites are not associated with macro rearrangements in the chromosome structure of these populations. Similarly, distinct evolutionary mechanisms would act upon histone genes and 5S rDNA, contributing to chromosomal association and co-location of these sequences. Data obtained indicate that distinct mechanisms drive the spreading of repetitive DNAs in the genome of A. bockmanni. Also, mobile elements may account for the polymorphism of the major rDNA sites and heterochromatin in this genus. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)