86 resultados para Fluid Dynamics -- Computer simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advancement of computer technology and the availability of technology computer aided design (CAD) errors in the designs are getting smaller. To this end the project aims to assess the reliability of the machine (CNC), which was designed by students of mechanical engineering college engineering - UNESP Bauru, by designing, modeling, simulation and machining an airfoil automotive. The profile template selected for the study will be a NACA 0012 machined plates in medium density fiberboard (MDF) and will be performed with a structural analysis simulation using finite elements and a software CFD (Computational Fluid Dynamics), and test the real scale model in a wind tunnel. The results obtained in the wind tunnel and CFD software will be compared to see the error in the machining process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to present, using a set of guidelines, how to apply the conservative distributed simulation paradigm (CMB protocol) to develop efficient applications. Using these guidelines, even a user with little experience on distributed simulation and computer architecture can have good performance on distributed simulations using conservative synchronization protocols for parallel processes.The set of guidelines is focus on a specific application domain, the performance evaluation of computer systems, considering models with coarse granularity and few logical processes and running over two platforms: parallel (high performance communication environment) and distributed (low performance communication environment).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have demonstrated that sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field, especially in the case when the magnetic field is parallel to the workpiece surface or intersects it at small angles. In this work we report the results from two-dimensional, particle-in-cell (PIC) computer simulations of magnetic field enhanced plasma immersion implantation system at different bias voltages. The simulations begin with initial low-density nitrogen plasma, which extends with uniform density through a grounded cylindrical chamber. Negative bias voltage is applied to a cylindrical target located on the axis of the vacuum chamber. An axial magnetic field is created by a solenoid installed inside the target holder. A set of simulations at a fixed magnetic field of 0.0025 T at the target surface is performed. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that the plasma density around the cylindrical target increases because of intense background gas ionization by the electrons drifting in the crossed E x B fields. Suppression of the sheath expansion and increase of the implantation current density in front of the high-density plasma region are observed. The effect of target bias on the sheath dynamics and implantation current of the magnetic field enhanced PIII is discussed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage of 10.0 kV is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform nitrogen plasma. A pair of external coils creates a static magnetic field with main vector component along the axial direction. Thus, a system of crossed ExB field is generated inside the vessel forcing plasma electrons to rotate in azimuthal direction. In addition, the axial variation of the magnetic field intensity produces magnetic mirror effect that enables axial particle confinement. It is found that high-density plasma regions are formed around the target due to intense background gas ionization by the trapped electrons. Effect of the magnetic field on the sheath dynamics and the implantation current density of the PIII system is investigated. By changing the magnetic field axial profile (varying coils separation) an enhancement of about 30% of the retained dose can be achieved. The results of the simulation show that the magnetic mirror configuration brings additional benefits to the PIII process, permitting more precise control of the implanted dose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nos últimos anos houve uma contribuição significativa dos físicos para a construção de um tipo de modelo baseado em agentes que busca reproduzir, em simulação computacional, o comportamento do mercado financeiro. Esse modelo, chamado Jogo da Minoria consiste de um grupo de agentes que vão ao mercado comprar ou vender ativos. Eles tomam decisões com base em estratégias e, por meio delas, os agentes estabelecem um intrincado jogo de competição e coordenação pela distribuição da riqueza. O modelo tem demonstrado resultados bastante ricos e surpreendentes, tanto na dinâmica do sistema como na capacidade de reproduzir características estatísticas e comportamentais do mercado financeiro. Neste artigo, são apresentadas a estrutura e a dinâmica do Jogo da Minoria, bem como as contribuições recentes relacionadas ao Jogo da Minoria denominado de Grande Canônico, que é um modelo mais bem ajustado às características do mercado financeiro e reproduz as regularidades estatísticas do preço dos ativos chamadas fatos estilizados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the dynamic modeling of a flexible robotic manipulator with two flexible links and two revolute joints, which rotates in the horizontal plane. The dynamic equations are derived using the Newton-Euler formulation and the finite element method, based on elementary beam theory. Computer simulation results are presented to illustrate this study. The dynamic model becomes necessary for use in future design and control applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A green ceramic tape micro-heat exchanger was developed using Low Temperature Co-fired Ceramics technology (LTCC). The device was designed by using Computational Aided Design software and simulations were made using a Computational Fluid Dynamics package (COMSOL Multiphysics) to evaluate the homogeneity of fluid distribution in the microchannels. Four geometries were proposed and simulated in two and three dimensions to show that geometric details directly affect the distribution of velocity in the micro-heat exchanger channels. The simulation results were quite useful for the design of the microfluidic device. The micro-heat exchanger was then constructed using the LTCC technology and is composed of five thermal exchange plates in cross-flow arrangement and two connecting plates, with all plates stacked to form a device with external dimensions of 26 x 26 x 6 mm(3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a numerical model to simulate refrigerant flow through capillary tubes, commonly used as expansion devices in refrigeration systems. The capillary tube is considered straight and horizontal. The flow is taken as one-dimensional and adiabatic. Steady state and thermodynamic equilibrium conditions are assumed. The two-fluid model, involving four conservation equations and considering the hidrodynamic nonequilibrium between the liquid and vapor phases is applied to the flow region. The pressure profiles and the mass flow rates given by the model are compared with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a viscous three-dimensional simulations coupling Euler and boundary layer codes for calculating flows over arbitrary surfaces. The governing equations are written in a general non orthogonal coordinate system. The Levy-Lees transformation generalized to three-dimensional flows is utilized. The inviscid properties are obtained from the Euler equations using the Beam and Warming implicit approximate factorization scheme. The resulting equations are discretized and approximated by a two-point fmitedifference numerical scheme. The code developed is validated and applied to the simulation of the flowfield over aerospace vehicle configurations. The results present good correlation with the available data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work is to study the preparation and spectroscopic behavior of the europium diphenylphosphinate complex -Eu(DPP)3. Elemental and thermogravimetric analysis, powder X-ray diffractometry, and infrared spectroscopy were applied to characterize the formula of the final product and the sixfold coordination of the Eu3+ ion. Excitation and emission spectra have been recorded at liquid nitrogen and room temperatures. The 5D0→7F2 transition intensity decreases when T decreases in comparison to the 5D0→7F1 transition intensity. Molecular mechanic calculations were developed in order to obtain the spatial coordinates of the Eu3+ and ligand ions. The simple overlap model was used to calculate the total splitting of the 5D0→7F1 transition, 5D0→7F0/5D 0→7F2 ntensity ratio and the intensity parameters, Ωλ (λ=2 and 4). Good agreements between theoretical predictions and experimental results have been obtained with g=2/3 as the effective charge and α=0.8×10-24 cm3 as the isotropic polarizability of the oxygen. © 1998 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er3+:LiYF4 single crystal has been studied by absorption and fluorescence spectroscopy in the IR-visible-UV (0-44000 cm-1) region from 4.2 K to room temperature. Polarized spectra were recorded in order to assign numerous Stark levels of electronic transitions mentioned but not attributed before in the related literature and to discuss the irreducible representations (irreps) of the 4I15/2 sublevels. A parametric hamiltonian, including free ion (Eν, α, β, γ, Tλ, ζ, Mk and Pi) and crystal field parameters (B2 0, B4 0, B4 4, B6 0 and B6 4) in an approximate D2d symmetry for the rare earth site in this scheelite type structure, was used to simulate 109 energy positions of the Er ion with a r.m.s. standard deviation of 14.6 cm-1. A comparison with previously published results for Nd3+ in the same matrix is done. © 1998 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water waves generated by a solid mass is a complex phenomenon discussed in this paper by numerical and experimental approaches. A model based on shallow water equations with shocks (Saint Venant) has developed. It can reproduce the amplitude and the energy of the wave quite well, but because it consistently generates a hydraulic jump, it is able to reproduce the profile, in the case of high relative thickness of slide, but in the case of small relative thickness it is unable to reproduce the amplitude of the wave. As the momentum conservation is not verified during the phase of wave creation, a second technique based on discharge transfer coefficient α, is introduced at the zone of impact. Numerical tests have been performed and validated this technique from the experimental results of the wave's height obtained in a flume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, many researchers in the field of biomedical sciences have made successful use of mathematical models to study, in a quantitative way, a multitude of phenomena such as those found in disease dynamics, control of physiological systems, optimization of drug therapy, economics of the preventive medicine and many other applications. The availability of good dynamic models have been providing means for simulation and design of novel control strategies in the context of biological events. This work concerns a particular model related to HIV infection dynamics which is used to allow a comparative evaluation of schemes for treatment of AIDS patients. The mathematical model adopted in this work was proposed by Nowak & Bangham, 1996 and describes the dynamics of viral concentration in terms of interaction with CD4 cells and the cytotoxic T lymphocytes, which are responsible for the defense of the organism. Two conceptually distinct techniques for drug therapy are analyzed: Open Loop Treatment, where a priori fixed dosage is prescribed and Closed Loop Treatment, where the doses are adjusted according to results obtained by laboratory analysis. Simulation results show that the Closed Loop Scheme can achieve improved quality of the treatment in terms of reduction in the viral load and quantity of administered drugs, but with the inconvenience related to the necessity of frequent and periodic laboratory analysis.