38 resultados para Fission tracks analysis
Resumo:
This paper presents a method for automatic identification of dust devils tracks in MOC NA and HiRISE images of Mars. The method is based on Mathematical Morphology and is able to successfully process those images despite their difference in spatial resolution or size of the scene. A dataset of 200 images from the surface of Mars representative of the diversity of those track features was considered for developing, testing and evaluating our method, confronting the outputs with reference images made manually. Analysis showed a mean accuracy of about 92%. We also give some examples on how to use the results to get information about dust devils, namelly mean width, main direction of movement and coverage per scene. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Two Macusanite pebbles (MB1 and MB2) were dated with the fission-track method. Six irradiations were carried out in different nuclear reactors: Pavia (Italy), IPEN-CNEN (Brazil) and IPEN-Lima (Peru). Measurements of the thorium and uranium induced-fission per target nucleus using natural thorium thin films and natural U-doped glasses calibrated against natural uranium thin films, together with lambda(F) of 8.46 x 10(-17) a(-1) were used to determine the ages. The apparent ages were corrected using the plateau and size correction methods. Track measurements were performed by different analysts, using different counting criteria. In addition, tracks were measured on samples which had been submitted to thermal treatment as well as on samples which had not been heated. Thermal treatments were carried out to erase the fossil tracks before neutron irradiation. No significant differences have been found in individual results, using the two Macusanite pebbles and the different nuclear reactors, age correction techniques, analysts, track-counting criteria, and thermal treatments before neutron irradiation. The great majority of the results (14/17) is compatible with the Ar-Ar ages of 5.12 +/- 0.11 and 5.10 +/- 0.11 Ma, Macusanite MB1 and MB2, respectively. However, the fission-track ages are systematically less (similar to8%) than the Ar-Ar ages of the two Macusanite samples studied. (C) 2003 Published by Elsevier Ltd.
Resumo:
New analyses have been performed in order to enhance the data-set on the independent ages of four glasses that have been proposed as reference materials for fission-track dating. The results are as follows. Moldavite - repeated (40)Ar/(39)Ar age determinations on samples from deposits from Bohemia and Moravia yielded an average of 14.34 +/- 0.08 Ma. This datum agrees with other recent determinations and is significantly younger than the (40)Ar/(39)Ar age of 15.21 +/- 0.15 Ma determined in the early 1980s. Macusanite (Peru) -four K-Ar ages ranging from 5.44 +/- 0.06 to 5.72 +/- 0.12 Ma have been published previously. New (40)Ar/(39)Ar ages gave an average of 5.12 +/- 0.04 Ma. Plateau fission-track ages determined using the IRMM-540 certified glass and U and Th thin films for neutron fluence measurements agree better with these new (40)Ar/(39)Ar ages than the previously published ages. Roccastrada glass (Italy) - a new (40)Ar/(39)Ar age, 2.45 +/- 0.04 Ma, is consistent with previous determinations. The Quiron obsidian (Argentina) is a recently discovered glass that has been proposed as an additional reference material for its high spontaneous track density (around 100 000 cm(-2)). Defects that might produce spurious tracks are virtually absent. An independent (40)Ar/(39)Ar age of 8.77 +/- 0.09 Ma was determined and is recommended for this glass. We believe that these materials, which will be distributed upon request to fission-track groups, will be very useful for testing system calibrations and experimental procedures.
Resumo:
Neutron dosimetry using natural uranium and thorium thin films makes possible that mineral dating by the fission-track method can be accomplished, even when poor thermalized neutron facilities are employed. In this case, the contributions of the fissions of (235)U, (238)U and (232)Th induced by thermal, epithermal and fast neutrons to the population of tracks produced during irradiation are quantified through the combined use of natural uranium and thorium films.If the Th/U ratio of the sample is known, only one irradiation (where the sample and the films of uranium and thorium are present) is necessary to perform the dating. However, if that ratio is unknown, it can be determined through another irradiation where the mineral to be dated and both films are placed inside a cadmium box.Problems related with film manufacturing and calibration are discussed. Special attention is given to the utilization of thin films having very low uranium content. The problems faced suggest that it may be better to substitute these films by uranium doped standard glasses calibrated with thicker uranium films (thickness greater than 1.5 x 10(13) mu m).
Resumo:
The Precambrian crystalline basement of southeast Brazil is affected by many Phanerozoic reactivations of shear zones that developed during the end of the Neoproterozoic in the Brasiliano orogeny. These reactivations with specific tectonic events, a multidisciplinary study was done, involving geology, paleostress, and structural analysis of faults, associated with apatite fission track methods along the northeastern border of the Parana basin in southeast Brazil.The results show that the study area consists of three main tectonic domains, which record different episodes of uplift and reactivation of faults. These faults were brittle in character and resulted in multiple generations of fault products as pseudotachylytes and ultracataclasites, foliated cataclasites and fault gouges.Based on geological evidence and fission track data, an uplift of basement rocks and related tectonic subsidence with consequent deposition in the Parana basin were modeled.The reactivations of the basement record successive uplift events during the Phanerozoic dated via corrected fission track ages, at 387 +/- 50 Ma (Ordovician); 193 +/- 19 Ma (Triassic); 142 +/- 18 Ma (Jurassic), 126 +/- 11 Ma (Early Cretaceous); 89 +/- 10 Ma (Late Cretaceous) and 69 +/- 10 Ma (Late Cretaceous). These results indicate differential uplift of tectonic domains of basement units, probably related to Parana basin subsidence. Six major sedimentary units (supersequences) that have been deposited with their bounding unconformities, seem to have a close relationship with the orogenic events during the evolution of southwestern Gondwana. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The two fundamental approaches to fission-track dating involve either an explicit determination of the thermal neutron fluence (φ-method) or a calibration against age standards (ζ-method). The neutron fluence measurements are carried out with metal-activation monitors or with uranium-fission monitors, co-irradiated with the samples. Uranium-fission monitors consist of either a thin mono-atomic) film, or a thick fission source (standard uranium glass) irradiated against a muscovite external track detector. In this work, different techniques for performing neutron-fluence measurements were compared: based on thin-film calibration, based on thick-source calibration, and based on gamma spectrometry of co-irradiated metal monitors (Au, Co). The results suggest that more experiments are needed to make all calibrations consistent, including new measurements of the length of etched induced tracks in mica. Also the standard glass calibration carried out with thin films should be confirmed with a greater number of calibrating irradiations. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The area between São Paulo and Porto Alegre in southeastern Brazil plays a key area to understand and quantify the evolution of the South Atlantic passive continental margin (SAPCM) in Brazil. In this contribution, we present new thermochronological data attained by fission-track and (U-Th-Sm)/He analysis on apatites and zircons from metamorphic, sedimentary and intrusive rocks. The zircon fission-track ages range between 108.4 (15.0) and 539.9 (68.4). Ma, the zircon (U-Th-Sm)/He ages between 72.9 (5.8) and 525.1(2.4). Ma, whereas the apatite fission-track ages range between 40.0 (5.3) and 134.7 (8.0). Ma, and the apatite (U-Th-Sm)/He ages between 32.1 (1.5) and 93.0 (2.5). Ma. The spatial distribution of these ages shows three distinct blocks with a different evolution cut by old fracture zones. While the central block exhibits an old stable block, the Northern and especially the Southern block underwent complex post-rift exhumation. The sample of the Northern block shows two distinct cooling phases in the Upper Cretaceous and the Paleogene to Neogene. After sedimentation of the Permian sandstones the samples of the Central block were never heated up over 100. °C with a following moderate to fast cooling phase in Cretaceous to Eocene time and a fast cooling between Oligocene to Miocene. The five thermal models obtained in the Southern block indicate a complex evolution with three cooling phases. The exhumation events of the three blocks correspond with the Paraná-Etendekka event, the alkaline intrusions due to the Trinidad hotspot, and the evolution of the continental rift basins in SE Brazil and are, therefore, most likely to be the major force for the post-rift evolution of the passive continental margin in SE Brazil, which therefore corresponds to the three main phases of the Andean orogeny. © 2013 Elsevier B.V.
Resumo:
We have developed a method to compute the albedo contrast between dust devil tracks and their surrounding regions on Mars. It is mainly based on Mathematical Morphology operators and uses all the points of the edges of the tracks to compute the values of the albedo contrast. It permits the extraction of more accurate and complete information, when compared to traditional point sampling, not only providing better statistics but also permitting the analysis of local variations along the entirety of the tracks. This measure of contrast, based on relative quantities, is much more adequate to establish comparisons at regional scales and in multi-temporal basis using imagery acquired in rather different environmental and operational conditions. Also, the substantial increase in the details extracted may permit quantifying differential depositions of dust by computing local temporal fading of the tracks with consequences on a better estimation of the thickness of the top most layer of dust and the minimum value needed to create dust devils tracks. The developed tool is tested on 110 HiRISE images depicting regions in the Aeolis, Argyre, Eridania, Noachis and Hellas quadrangles. As a complementary evaluation, we also performed a temporal analysis of the albedo in a region of Russell crater, where high seasonal dust devil activity was already observed before, comprising the years 2007-2012. The mean albedo of the Russell crater is in this case indicative of dust devil tracks presence and, therefore, can be used to quantify dust devil activity. (C) 2014 Elsevier Inc. All rights reserved.