58 resultados para Finite Element Method (FEM)
Resumo:
The aim of this study was to use the finite element method to evaluate the distribution of stresses and strains on the local bone tissue adjacent to the miniplate used for anchorage of orthodontic forces. Methods: A 3-dimensional model composed of a hemimandible and teeth was constructed using dental computed tomographic images, in which we assembled a miniplate with fixation screws. The uprighting and mesial movements of the mandibular second molar that was anchored with the miniplate were simulated. The miniplate was loaded with horizontal forces of 2, 5, and 15 N. A moment of 11.77 N.mm was also applied. The stress and strain distributions were analyzed, and their correlations with the bone remodeling criteria and miniplate stability were assessed. Results: When orthodontic loads were applied, peak bone strain remained within the range of bone homeostasis (100-1500 mu m strain) with a balance between bone formation and resorption. The maximum deformation was found to be 1035 mu m strain with a force of 5 N. At a force of 15 N, bone resorption was observed in the region of the screws. Conclusions: We observed more stress concentration around the screws than in the cancellous bone. The levels of stress and strain increased when the force was increased but remained within physiologic levels. The anchorage system of miniplate and screws could withstand the orthodontic forces, which did not affect the stability of the miniplate.
Resumo:
The study of short implants is relevant to the biomechanics of dental implants, and research on crown increase has implications for the daily clinic. The aim of this study was to analyze the biomechanical interactions of a singular implant-supported prosthesis of different crown heights under vertical and oblique force, using the 3-D finite element method. Six 3-D models were designed with Invesalius 3.0, Rhinoceros 3D 4.0, and Solidworks 2010 software. Each model was constructed with a mandibular segment of bone block, including an implant supporting a screwed metal-ceramic crown. The crown height was set at 10, 12.5, and 15 mm. The applied force was 200 N (axial) and 100 N (oblique). We performed an ANOVA statistical test and Tukey tests; p < 0.05 was considered statistically significant. The increase of crown height did not influence the stress distribution on screw prosthetic (p > 0.05) under axial load. However, crown heights of 12.5 and 15 mm caused statistically significant damage to the stress distribution of screws and to the cortical bone (p <0.001) under oblique load. High crown to implant (C/I) ratio harmed microstrain distribution on bone tissue under axial and oblique loads (p < 0.001). Crown increase was a possible deleterious factor to the screws and to the different regions of bone tissue. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose - This paper proposes an interpolating approach of the element-free Galerkin method (EFGM) coupled with a modified truncation scheme for solving Poisson's boundary value problems in domains involving material non-homogeneities. The suitability and efficiency of the proposed implementation are evaluated for a given set of test cases of electrostatic field in domains involving different material interfaces.Design/methodology/approach - the authors combined an interpolating approximation with a modified domain truncation scheme, which avoids additional techniques for enforcing the Dirichlet boundary conditions and for dealing with material interfaces usually employed in meshfree formulations.Findings - the local electric potential and field distributions were correctly described as well as the global quantities like the total potency and resistance. Since, the treatment of the material interfaces becomes practically the same for both the finite element method (FEM) and the proposed EFGM, FEM-oriented programs can, thus, be easily extended to provide EFGM approximations.Research limitations/implications - the robustness of the proposed formulation became evident from the error analyses of the local and global variables, including in the case of high-material discontinuity.Practical implications - the proposed approach has shown to be as robust as linear FEM. Thus, it becomes an attractive alternative, also because it avoids the use of additional techniques to deal with boundary/interface conditions commonly employed in meshfree formulations.Originality/value - This paper reintroduces the domain truncation in the EFGM context, but by using a set of interpolating shape functions the authors avoided the use of Lagrange multipliers as well Mathematics in Engineering high-material discontinuity.
Resumo:
This paper describes strategies and techniques to perform modeling and automatic mesh generation of the aorta artery and its tunics (adventitia, media and intima walls), using open source codes. The models were constructed in the Blender package and Python scripts were used to export the data necessary for the mesh generation in TetGen. The strategies proposed are able to provide meshes of complicated and irregular volumes, with a large number of mesh elements involved (12,000,000 tetrahedrons approximately). These meshes can be used to perform computational simulations by Finite Element Method (FEM). © Published under licence by IOP Publishing Ltd.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
The bond between steel and concrete is essential for the existence of reinforced concrete structures, as both materials act together to absorb structural strain. The bond phenomenon is considered to be complex regarding many factors that affect it. Several types of bond tests have been proposed over years. One is the modified proposed of pull-out test, which was elaborated by Lorrain and Barbosa [1] called APULOT test (Appropriete pull-out-test). Based on experimental results obtained by Vale Silva[2] either by conventional pull-out tests, or by modified pull-out test, APULOT, seeks to know the numeric behavior of bond steel-concrete through a numerical simulation using a calculation code ATENA which is based on the Finite Element Method (FEM). The numerical simulation provided better evaluate the stress distribution and cracking that occurs during the test, thereby becoming a valuable tool to support the experimental project that aims to validation, validation partially or not recommend the modified bond test steel-concrete - APULOT test - as quality control test of structural concrete. The numerical results showed good representation compared to experimental results.