71 resultados para Extended Trading Hours
Resumo:
Barium titanate ceramics were prepared through mechanochemical synthesis starting from fresh prepared barium oxide and titanium oxide in rutile form. Mixture of oxides was milled in zirconia oxide jar in the planetary ball-mill during 30, 60, 120 and 240 min. Extended time of milling directed to formation of higher amount of barium titanate perovskite phase. Barium titanate with good crystallinity was formed after 240 min. Sintering without pre-calcinations step was performed at 1330 degrees C for 2 hours with heating rate of 10 degrees C/min. The XRD, DSC, IR and TEM analyses were performed. Electric and ferroelectric properties were studied. Very well defined hysteresis loop was obtained.
Resumo:
An extended version of HIER, a query-the-user facility for expert systems is presented. HIER was developed to run over Prolog programs, and has been incorporated to systems that support the design of large and complex applications. The framework of the extended version is described,; as well as the major features of the implementation. An example is included to illustrate the use of the tool, involving the design of a specific database application.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Cooling of pacu (Piaractus mesopotamicus) embryos at various stages of development for 6 or 10 hours
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We extend the Weyl-Wigner transformation to those particular degrees of freedom described by a finite number of states using a technique of constructing operator bases developed by Schwinger. Discrete transformation kernels are presented instead of continuous coordinate-momentum pair system and systems such as the one-dimensional canonical continuous coordinate-momentum pair system and the two-dimensional rotation system are described by special limits. Expressions are explicitly given for the spin one-half case. © 1988.
Resumo:
A scheme inspired in Lie algebra extensions is introduced that enlarges gauge models to allow some coupling between space-time and gauge space. Everything may be written in terms of a generalized covariant derivative including usual differential plus purely algebraic terms. A noncovariant vacuum appears, introducing a natural symmetry breaking, but currents satisfy conservation laws alike those found in gauge theories. © 1991 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
One common problem in all basic techniques of knowledge representation is the handling of the trade-off between precision of inferences and resource constraints, such as time and memory. Michalski and Winston (1986) suggested the Censored Production Rule (CPR) as an underlying representation and computational mechanism to enable logic based systems to exhibit variable precision in which certainty varies while specificity stays constant. As an extension of CPR, the Hierarchical Censored Production Rules (HCPRs) system of knowledge representation, proposed by Bharadwaj & Jain (1992), exhibits both variable certainty as well as variable specificity and offers mechanisms for handling the trade-off between the two. An HCPR has the form: Decision If(preconditions) Unless(censor) Generality(general_information) Specificity(specific_information). As an attempt towards evolving a generalized knowledge representation, an Extended Hierarchical Censored Production Rules (EHCPRs) system is suggested in this paper. With the inclusion of new operators, an Extended Hierarchical Censored Production Rule (EHCPR) takes the general form: Concept If (Preconditions) Unless (Exceptions) Generality (General-Concept) Specificity (Specific Concepts) Has_part (default: structural-parts) Has_property (default:characteristic-properties) Has_instance (instances). How semantic networks and frames are represented in terms of an EHCPRs is shown. Multiple inheritance, inheritance with and without cancellation, recognition with partial match, and a few default logic problems are shown to be tackled efficiently in the proposed system.
Resumo:
The conformational transition from coil to extended coil for polygalacturonic acid has been studied by conductometric titrations and Monte Carlo simulations. The results of conductometric titrations at different polymer concentrations have been analyzed using the model proposed by Manning,1 which describes the conductivity of polyelectrolitic solutions. This experimental approach provides the transport factor and the average distance between charged groups at different degrees of ionization (α). The mean distances between charged groups have been compared with the values obtained by Monte Carlo simulations. In these simulations the polymer chain is modeled as a self-avoiding random walk in a cubic lattice. The monomers interact through the unscreened Coulombic potential. The ratio between the end-to-end distance and the number of ionized beads provides the average distance between charged monomers. The experimental and theoretical values are in good agreement for the whole range of ionization degrees accessed by conductometric titrations. These results suggest that the electrostatic interactions seem to be the major contribution for the coil to extended coil conformational change. The small deviations for α ≤ 0.5 suggests that the stiffness of the chain, associated with local interactions, becomes increasingly significant as the fraction of charged groups is decreased. © 2000 American Chemical Society.
Resumo:
The purpose of this paper is to show certain links between univariate interpolation by algebraic polynomials and the representation of polyharmonic functions. This allows us to construct cubature formulae for multivariate functions having highest order of precision with respect to the class of polyharmonic functions. We obtain a Gauss type cubature formula that uses ℳ values of linear functional (integrals over hyperspheres) and is exact for all 2ℳ-harmonic functions, and consequently, for all algebraic polynomials of n variables of degree 4ℳ - 1.
Resumo:
This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.
Resumo:
The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The alignment system for the muon spectrometer of the CMS detector comprises three independent subsystems of optical and analog position sensors. It aligns muon chambers with respect to each other and to the central silicon tracker. System commissioning at full magnetic field began in 2008 during an extended cosmic ray run. The system succeeded in tracking muon detector movements of up to 18 mm and rotations of several milliradians under magnetic forces. Depending on coordinate and subsystem, the system achieved chamber alignment precisions of 140-350 μm and 30-200 μrad, close to the precision requirements of the experiment. Systematic errors on absolute positions are estimated to be 340-590 μm based on comparisons with independent photogrammetry measurements. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
Taphonomy of the pygocephalomorpha (Crustacea, Peracarida, Malacostraca), Permian, Paraná Basin, Brazil, and its paleoenvironmental meaning. Crustaceans (Pygocephalomorpha, Peracarida) are the main fossil invertebrates recorded in the Early Permian Assistência Formation, Irati Subgroup, State of São Paulo, Paraná Basin. For this study, samples taken from the base of the Ipeúna Member, Bairrinho Bed, State of São Paulo, were analyzed and complemented by fossils from the Irati Formation, State of Rio Grande do Sul. The taphonomic spectrum of the pygocephalomorphs includes three main preservational modes: Type 1. Complete pygocephalomorphs (with outstretched or flexed abdomen), which are associated to cream-colored mudstones and more commonly to black shales. In rare cases, molds of soft parts are preserved. They suffered rapid burial (hours to days) by mud blankets associated to storm events in anoxic bottoms, below storm wave base with minimum bottom disruption, followed by low rates of background sedimentation; Type 2. Partly articulated (carapace and abdomen, with or without caudal fan and without appendages) pygocephalomorphs, with extended or flexed abdomen, which are present in cream-colored pelites, associated with hummocky cross-stratifications, intercalated with black shales. These may represent individuals or remains lying in the sediment-water interface preserved by rapid burial associated to episodic sedimentation events; Type 3. Disarticulated pygocephalomorphs, with isolated carapaces, abdomen, or abdominal segments. This is the predominant preservational mode in our samples. The skeletal remains can be found isolated or in dense, bioclast-supported concentrations (micro-coquines), representing proximal to distal tempestites. Finally, the extreme preservational quality seen in crustaceans of the Type 1 recorded in black shales, occasionally with molds of soft parts, indicates that the host rocks may represent Konservat-Lagerstätten deposits, as already suggested to coeval occurrences of the Irati Formation in Uruguay. © 2013 by the Sociedade Brasileira de Paleontologia.