119 resultados para Explicit numerical method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work is concerned with numerical simulation of axisymmetric viscoelastic free surface flows using the Phan-Thien-Tanner (PTT) constitutive equation. A finite difference technique for solving the governing equations for unsteady incompressible flows written in Cylindrical coordinates on a staggered grid is described. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are applied. The numerical method is verified by comparing numerical predictions of fully developed flow in a pipe with the corresponding analytic solutions. To demonstrate that the numerical method can simulate axisymmetric free surface flows governed by the PTT model, numerical results of the flow evolution of a drop impacting on a rigid dry plate are presented. In these simulations, the rheological effects of the parameters epsilon and xi are investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a computational fluid dynamics (CFD) application about the axial fan design used in an agricultural spraying system with a theoretical and experimental analysis of comparative results between the characteristic curves of a fan for several rotations and numerical results for the influence of blade attack angle variation and optimization of the spraying system, both for a same rotation. Flow was considered three-dimensional, turbulent, isothermal, viscous and non-compressible in a steady state, disregarding any influence of the gravity field. The average turbulent field was obtained from the application of time average where the turbulence model required for closing the set of equations was the k-E model. Resolution of all connected phenomena was achieved with the help of a fluid dynamics computer, CFX, which uses the finite volumes technique as a numerical method. In order to validate the theoretical analysis, an experiment was conducted in a circular section of a horizontal wind tunnel, using a Pitot tube for pressure readings. The main results demonstrate that the methodology used, based on CFD techniques, is able to reproduce the phenomenological behavior of an axial fan in a spraying system because results were very reliable and similar to experimentally measured ones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Through deductions and formulations of the equations governing the behavior of plates elastic and thin based Kirchhoff theory, it is evident that it is justifiable to the complication of the numerical methods considering the complexity of the equations that describe the physical behavior of these elements and obtaining analytical solutions for specific situations. This study is directed to the application of the numerical method which is based on discretizations to the simplest elements which results in the reduction of data to be processed from. The numerical method in question is the Boundary Element Methods (BEM), as the name suggests, the discretizations are only the edges of the elements. The BEM converts the complex integral equations, in sums of functions that reduce the unknowns at the nodes that define the ends of discrete elements, obtaining internal values to elements using interpolation functions. Confirming the need and usefulness of the BEM, apply, then the foundations necessary to the specific cases of Civil Engineering where traditional methods do not provide the desired support, leaving in question the security situations and economics of the projects

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cancer biology is a complex and expanding field of science study. Due its complexity, there is a strong motivation to integrate many fields of knowledge to study cancer biology, and biological stoichiometry can make this. Biological stoichiometry is the study of the balance of multiple chemical elements in biological systems. A key idea in biological stoichiometry is the growth rate hypothesis, which states that variation in the carbon:nitrogen:phosphorus stoichiometry of living things is associated with growth rate because of the elevated demands for phosphorusrich ribosomal RNA and other elements necessary to protein synthesis. As tumor cells has high rate proliferation, the growth rate hypothesis can be used in cancer study. In this work the dynamic of two tumors (primary and secondary) and the chemical elements carbon and nitrogen are simulate and analyzed through mathematical models that utilize as central idea biological stoichiometry. Differential equations from mathematical model are solved by numerical method Runge-Kutta fourth order

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Urucuia Aquifer System represents a strategic water source in western Bahia. Its baseflow is responsible for the flow rate of the main tributaries of São Francisco river left bank in the dry season, including the Rio Grande, its main tributary in Bahia state. This river has a hydrological regime heavily affected by groundwater and is located in a region with conflicts about water resources. The aquifers geology is constituted by neocretacious sandstones of Urucuia Group subdivided in Posse Formation and Serra das Araras Formation. The embasement is formed by neoproterozoic rocks of Bambuí Group. This work focuses on an important tool application, the mathematical model, whose function is represent approximately and suitably the reality so that can assist in different scenarios simulations and make predictions. Many studies developed in this basin provided the conceptual model basis including a full free aquifer, lithological and hydraulical homogeneity in entire basin, null flux at plateau borders and aquifer base. The finite element method is the numerical method used and FEFLOW the computational algorithm. The simulated area was discretized in a single layer with 27.357,6 km² (314.432 elements and 320.452 nodes) totaling a 4.249,89 km³ volume. Were utilized 21 observation wells from CERB to calibrate the model. The terrain topography was obtained by SRTM data and the impermeable base was generated by interpolation of descriptive profiles from wells and electric vertical drilling from previous studies. Works in this area obtained mean recharge rates varying approximately from 20% to 25% of average precipitation, thus the values of model recharge zones varying in this range. Were distributed 4 hydraulic conductivity zones: (K1) west zone with K=6x10-5 m/s; (K2) center-east zone with K=3x10-4 m/s; (K3) far east zone with K=5x10-4 m/s; e (K4) east-north zone with K=1x10-5 m/s. Thereby was incorporated to the final conceptual model...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work was to develop a numerical method to solve boundary value problems concerning to the use of dispersion model for describing the hydraulic behavior of chemical or biological reactors employed in the wastewater treatment. The numerical method was implemented in FORTRAN language generating a computational program which was applied to solve cases involving reaction kinetics of both integer and fractional orders. The developed method was able to solve the proposed problems evidencing to be a useful tool that provides more accurate design of wastewater treatment reactors

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The momentum dependence of the ρ0-ω mixing contribution to charge-symmetry breaking (CSB) in the nucleon-nucleon interaction is compared in a variety of models. We focus in particular on the role that the structure of the quark propagator plays in the predicted behaviour of the ρ0-ω mixing amplitude. We present new results for a confining (entire) quark propagator and for typical propagators arising from explicit numerical solutions of quark Dyson-Schwinger equations We compare these to hadronic and free quark calculations The implications for our current understanding of CSB experiments is discussed.