213 resultados para Etanol combustível


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Geografia - IGCE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The State of São Paulo is responsible for the largest sugar cane production in Brazil, as well as the largest production of ethanol made of this raw material – which is widely used as fuel for automobiles. This utilization began in the 1970’s, with the institution by the Brazilian government of the National Alcohol Program (PRO-ÁLCOOL), as a consequence of the petroleum crisis, rising again five years ago, with the development of flex fuel cars. The obtaining process of ethanol originates residues; amongst them, vinasse is the one that’s generated in the largest amount (an average of 10 to 13 litres/litre of ethanol produced). The disposal of this residue in waters was only forbidden in 1978, but before that, researchers had already been investigating its utilization as raw material. This paper had the objective of accompany the biodegradation of vinasse by evaluating the oxygen comsumption during it until the ultimate Biochemical Oxygen Demand (uBOD), performed in twenty days; another objective was to analyse the biomass production of Saccharomyces cerevisae in this residue. Physical and chemical analyses of the residue were also performed, as well as acute toxicity essays using Daphnia similis and Dugesia tigrina, before and after its biodegradation. The physical and chemical analyses pointed elevated acidness (pH = 3,98), conductivity (8,30 mS/cm) and COD (25.693,43 mg O2/L) and mean quantity of suspended solids (5.246 mg/L). The toxicity essays indicated absence of toxic potential in vinasse after biodegradation for both species. The uBOD degradated until 88,22% of the COD, demonstrating the possibility of biodegradation of most of the residue’s organic load in a relatively short period of time. S. cerevisae caused a 37,03% COD diminution in vinasse, diminished its conductivity and promoted a slight elevation of the pH; it obtained low biomass...(Complete abstract click electronic access below)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol, the main automotive biofuel, has its production based on the fermentation of sugars found in biological materials and on the distillation of the alcoholic media formed during the fermentative process. Stillage is the main residue from ethanol production, containing a high organic loading in addition to acidic and corrosive characteristics. Considering the available technologies to treat stillage, we highlight anaerobic digestion, which allows the reduction of the impacts associated to pollutants loading of this effluent and the generation of energy from the methane gas produced in the process. Based on the high treatment efficiency usually associated to the anaerobic process, this work aimed to assess whether anaerobic systems applied to the treatment of stillage are energetically self-sufficient. First we evaluated the energy recovery capacity in an anaerobic reactor applied to the treatment of stillage resulting from corn-to-ethanol processing. The results indicated the great influence that a correct selection of electrical equipment and their respective operating periods have on the net energy balance of the anaerobic treatment. The high energy consumption of the heater would not allow the system to achieve a positive net energy balance – the maximum energy recovery would reach only 0.68% of the consumption. However, the replacement of the mixture equipment would result in energy gains ranging from 8.5 to 967.9% of the consumption. In this work we also assessed the efficiency of methane yields for a few studies and the correlation between some parameters of the anaerobic process. With respect to the methane yield, we noted that mesophilic systems tend to be more advantageous than the thermophilic ones (efficiency of 76.45 ± 22.51% vs. 69.40 ± 30.36%). Considering the study... (Complete abstract click electronic access below)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ