451 resultados para Equine chorionic gonadotropin


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent work with P-36 demonstrates that the replacement of the last two doses of Follicle-Stimulating Hormone (FSH) with equine chorionic gonadotropin (eCG) increases embryo yields. However, it is unclear if the positive effect of eCG is related to its FSH-like activity, LH-like activity, or both. This study aimed to verify the replacement of eCG with pLH on the last day of superstimulatory treatment. Twenty-five Nelore cows were allocated to four groups: P-36 (control), P-36/eCG, P-36/LH2, and P-36/LH4. All animals underwent four treatments in a crossover design. The control group cows were superstimulated with decreasing doses of porcine Follicle-Stimulating Hormone (pFSH, 133 mg, im). In the P-36/eCG, P-36/LH2, and P-36/LH4 groups, the last two doses of pFSH were replaced in the former group by two doses of eCG (200 IU each dose, im) and in the latter two groups by two doses of pLH (1 and 2 mg each dose, im), respectively. Donors received fixed-time artificial insemination 12 and 24 hours after pLH. Embryo flushing was performed on D16. Data were analyzed by ANOVA (Proc Mixed, SAS). There was a trend of decreasing ovulation rate when comparing groups LH2 and eCG (P = 0.06). However, there was no significant difference in the mean number of viable embryos among groups P-36 (3.3 ± 0.7), P-36/eCG (4.5 ± 0.5), P-36/LH2 (3.7 ± 0.8), and P-36/LH4 (4.2 ± 1.0). It is concluded that the replacement of eCG by pLH on the last day of superstimulatory treatment can be performed with no significant variation in the production of viable embryos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this study were to determine the efficacy of recombinant equine luteinizing hormone (reLH) in shortening the time to ovulation in cycling mares and to determine the effects of treatment on endogenous hormones and inter-ovulatory intervals. In study 1, mares of light horse breeds (3-20 years) were treated with either a vehicle, various doses of reLH, or human chorionic gonadotropin (hCG). Cycling mares were examined by palpation and ultrasound per rectum daily or every 12 h from the time of treatment to ovulation. In studies 2 and 3, jugular blood samples were collected daily or every 12 h from the time of treatment to ovulation for analysis of LH, follicle stimulating hormone (FSH), estradiol-17 beta (E-2), and progesterone (P-4) by radioimmunoassays (RIA). Increasing doses of reLH (0.3, 0.6, 0.75, and 0.9 mg) showed increasing effectiveness at inducing ovulation within 48 h of treatment. Treatments with the 0.75 and 0.9 mg doses of reLH resulted in 90% and 80% ovulation rates, which were similar to hCG treatment (85.7%). Except for the early rise in LH after treatment with 0.5, 0.65, and 1.0 mg of reLH, hormone profiles appeared to be similar between control and treated cycles. Inter-ovulatory intervals were similar between control and treatment cycles. In conclusion, reLH is a reliable and effective ovulatory agent that does not significantly alter endogenous hormone profiles or affect inter-ovulatory intervals.(c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of a low dose of equine purified FSH (eFSH) on incidence of multiple ovulations and embryo recovery rate in mares were studied. During the physiological breeding season in Brazil (19 degrees 45'45'S), 14 Mangalarga Marchador donor mares were used in a crossover study and another 25 mares of the same breed, between 3 years and 12 years of age were used as recipients for the embryo transfers. Donors were monitored during two consecutive oestrus cycles, an untreated control cycle followed by a treated cycle, when eFSH was administered. In both cycles, after an embryo collection attempt on day 8 post-ovulation all mares received 7.5 mg dinoprost and had their two largest follicles tracked daily by ultrasonography until the period of ovulation. Mares were inseminated every 48 h with extended fresh semen from a single stallion after the identification of a 35-mm follicle until the period of ovulation. Ovulations were induced by intravenous administration of 2.500 IU of human chorionic gonadotropin, upon detection of a 35- to 40-mm follicle. In the treated cycle, 5 mg eFSH was given intramuscularly once a day, from day 8 post previous ovulation until at least one follicle reached 35 mm in diameter. Embryo flushes were performed on day 8 of dioestrus (day 0 = ovulation). Treatment with eFSH resulted in higher (p < 0.05) ovulation rate and incidence of multiple ovulations compared to the control (1.6 vs 1.0 and 50% vs 0%, respectively - one mare had triple ovulation). However, embryo recovery rates in the control and treated cycles were similar (0.8 and 1.0, respectively; p > 0.05). Pregnancy rates in the recipient mares following embryo transfer were similar for the control and eFSH cycles (11/11 and 10/14, respectively). Additional studies are necessary in order to develop a low-dose protocol for the use of eFSH that brings a more consistent contribution to the efficiency of commercial equine embryo transfer programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation. In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation. Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares. In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3). In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of experiment 1 was to evaluate the effects of treatments with human chorionic gonadotropin (hCG) or GnRH 7 d after induced ovulation on reproductive performance of lactating dairy cows submitted to timed artificial insemination (TAI) or timed embryo transfer (TET). A total of 834 potential breedings were used from 661 lactating Holstein cows (37.3 +/- 0.3 kg of milk/d). Cows had ovulation synchronized and were assigned randomly to receive TAI on d 0 or TET on d 7. Within each group, cows were assigned randomly to receive on d 7 no additional treatment (control; n(TAI) = 156; n(TET) = 126), a 100 mu g i.m. injection of GnRH (n(TAI) = 155; n(TET) = 124), or a 2,500 TU i.m. injection of hCG (ITA = 151; n(TET) = 122). Postbreeding treatment affected the percentages of pregnant cows at TET on d 28 (control: 38.1%; GnRH: 52.4%; hCG: 45.1%) and on d 60 (control: 32.5%; GnRH: 41.1%; hCG: 38.5%), but postbreeding treatment did not affect percentages of pregnant cows at TAT on d 28 (control: 30.1%; GnRH: 32.2%; hCG: 32.4%) or on d 60 (control: 25.6%; GnRH: 27.1%; hCG: 29.8%). The objective of experiment 2 was to evaluate the effect of a treatment with GnRH 7 d after TET on reproductive performance of lactating dairy cows that received a previous GnRH treatment at TET. A total of 285 potential breedings were used from 257 lactating Holstein cows (35.1 +/- 0.8 kg of milk/d). Cows had ovulation synchronized and were assigned for TET on d 7. Immediately after TET, all cows were treated with a 100 mu g i.m. injection of GnRH. on d 14, cows were assigned randomly to receive (G7-14; n = 147) or not (G7; n = 138) an additional injection of GnRH. Pregnancy diagnosis were performed on d 28 and 60. The additional treatment with GnRH on d 14 did not affect the percentages of pregnant cows on d 28 (G7: 48.5%; G7-14: 42.9%) or on d 60 (G7: 39.8%; G7-14: 37.4%). In conclusion, treatment with GnRH or hCG 7 d after induced ovulation increased conception rates in lactating dairy cows submitted to TET, but not in cows submitted to TAI. Moreover, treatment with GnRH 7 d after TET did not enhance reproductive performance of lactating dairy cows that received a previous GnRH treatment at TET.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of equine FSH (eFSH) for inducing follicular development and ovulation in transitional mares was evaluated. Twenty-seven mares, from 3 to 15 years of age, were examined during the months of August and September 2004, in Brazil. Ultrasound evaluations were performed during 2 weeks before the start of the experiment to confirm transitional characteristics (no follicles larger than 25 mm and no corpus luteum [CL] present). After this period, as the mares obtained a follicle of at least 25 mm, they were assigned to one of two groups: (1) control group, untreated; (2) treated with 12.5 mg eFSH, 2 times per day, until at least half of all follicles larger than 30 mm had reached 35 mm. Follicular activity of all mares was monitored. When most of the follicles from treated mares and a single follicle from control mares acquired a preovulatory size ( : 35 mm), 2,500 IU human chorionic gonadotropin (hCG) was administered IV to induce ovulation. After hCG administration, the mares were inseminated with fresh semen every other day until ovulation. Ultrasound examinations continued until detection of the last ovulation, and embryo recovery was performed 7 to 8 days after ovulation. The mares of the treated group reached the first preovulatoiy follicle (4.1 +/- 1.0 vs 14.9 +/- 10.8 days) and ovulated before untreated mares (6.6 +/- 1.2 vs 18.0 +/- 11.1 days; P <.05). All mares were treated with prostaglandin F-2 alpha (PGF(2 alpha)), on the day of embryo flushing. Three superovulated mares did not cycle immediately after PGF(2 alpha), treatment, and consequently had a longer interovulatory interval (22.4 vs 10.9 days, P < 0.05). The mean period of treatment was 4.79 1.07 days and 85.71% of mares had multiple ovulations. The number of ovulations (5.6 vs 1.0) and embryos (2.0 vs 0.7) per mare were higher (P < 0.05) for treated mares than control mares. In conclusion, treatment with eFSH was effective in hastening the onset of the breeding season, inducing multiple ovulations, and increasing embryo production in transitional mares. This is the first report showing the use of FSH treatment to recover embryos from the first cycle of the year.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to modulate uterine inflammatory response and evaluate the effect of corticosteroid therapy on fertility, 90 cycles of 45 mares were used for artificial insemination with frozen semen, using three different protocols: G1 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + 20 mL of seminal plasma; G2 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + corticosteroid therapy; G3 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + 20 mL of seminal plasma + corticosteroid therapy. Corticosteroid therapy consisted on one administration of prednisolone acetate (0.1 mg/Kg - Predef (R)) when mares presented 35mm follicles and uterine edema, concomitantly with the unique dose of hCG (human chorionic gonadotropin), then repeated each 12 hours until ovulation. on first fertility trial, with normal mares, there was no difference between control and treated groups (p>0.05), using seminal plasma associated with corticosteroid therapy (40 vs. 38%, respectively) or corticosteroid therapy alone (40 vs. 45% respectively). The second fertility trial, performed with mares with previous history of post-insemination endometritis, demonstrated a significant increase of pregnancy rate when mares were submitted to corticosteroid therapy (0.0 vs. 64.5%, respectively; p<0.05). Corticosteroid therapy was shown to be safe, with no physical or reproductive alterations on treated mares, demonstrating to be an adequate option to those animals with history of post-breeding or post-insemination endometritis. Further clinical research is necessary to confirm these results and contribute to the establishment of preventive therapy for cases of post-insemination endometritis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Girolando (Gir x Holstein) is a very common dairy breed in Brazil because it combines the rusticity of Gir (Bos indicus) with the high milk yield of Holstein (Bos taurus). The ovarian follicular dynamics and hormonal treatments for synchronization of ovulation and timed artificial insemination were studied in Girolando heifers. The injection of a gonadotrophin-releasing hormone (GnRH) agonist was followed 6 or 7 days (d) later by prostaglandin F2a (PGF2a). Twenty-four hours after PGF2a injection either human chorionic gonadotropin (hCG, GPh-d6 and GPh-d7 groups) or estradiol benzoate (EB, GPE-d6 and GPE-d7 groups) was administered to synchronize ovulation and consequently allow timed artificial insemination (AI) 24 and 30 h after hCG and EB injection, respectively. Follicular dynamics in Girolando heifers was characterized by the predominance of three follicular waves (71.4%) with sizes of dominant follicles (10-13 mm) and corpus luteum (approximately 20 mm) similar to those for Bos indicus cattle. In the GnRH-PGF-hCG protocol, hCG administration induced earlier ovulation (67.4 h, P<0.01) compared to the control group (GnRH-PGF) and a better synchronization of ovulation, since most of it occurred within a period of 12 to 17 h. Pregnancy rate after timed AI was 42.8 (3/7, GPh-d6) to 50% (7/14, GPh-d7). In contrast, estradiol benzoate (GnRH-PGF-EB protocol) synchronized ovulation of only 5 of 11 heifers from the GPE-d7 group and of none (0/7) from the GPE-d6 group, which led to low pregnancy rates after timed AI (27.3 and 0%, respectively). However, since a small number of Girolando heifers was used to determine pregnancy rates in the present study, pregnancy rates should be confirmed with a larger number of animals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiple ovulation (superovulation) and embryo transfer has been used extensively in cattle. In the past decade, superstimulatory treatment protocols that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-time AI (FTAI), have been developed for zebu (Bos indicus) and European (Bos taurus) breeds of cattle. There is evidence that additional stimulus with LH (through the administration of exogenous LH or equine chorionic gonadotrophin (eCG)) on the last day of the superstimulatory treatment protocol, called the 'P-36 protocol' for FTAI, can increase embryo yield compared with conventional protocols that are based on the detection of oestrus. However, inconsistent results with the use of hormones that stimulate LH receptors (LHR) have prompted further studies on the roles of LH and its receptors in ovulatory capacity (acquisition of LHR in granulosa cells), oocyte competence and embryo quality in superstimulated cattle. Recent experiments have shown that superstimulation with FSH increases mRNA expression of LHR and angiotensin AT(2) receptors in granulosa cells of follicles >8 mm in diameter. In addition, FSH decreases mRNA expression of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in oocytes, but increases the expression of both in cumulus cells, without diminishing the capacity of cumulus-oocyte complexes to generate blastocysts. Although these results indicate that superstimulation with FSH is not detrimental to oocyte competence, supplementary studies are warranted to investigate the effects of superstimulation on embryo quality and viability. In addition, experiments comparing the cellular and/or molecular effects of adding eCG to the P-36 treatment protocol are being conducted to elucidate the effects of superstimulatory protocols on the yield of viable embryos.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To compare cost-effectiveness between pituitary down-regulation with a GnRH agonist (GnRHa) short regimen on alternate days and GnRH antagonist (GnRHant) multidose protocol on in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) outcome. Design: Prospective, randomized. Setting: A private center. Patient(s): Patients were randomized into GnRHa (n = 48) and GnRHant (n = 48) groups. Intervention(s): GnRHa stimulation protocol: administration of triptorelin on alternate days starting on the first day of the cycle, recombinant FSH (rFSH), and recombinant hCG (rhCG) microdose. GnRHant protocol: administration of a daily dose of rFSH, cetrorelix, and rhCG microdose. Main Outcome Measure(s): ICSI outcomes and treatment costs. Result(s): A significantly lower number of patients underwent embryo transfer in the GnRHa group. Clinical pregnancy rate was significantly lower and miscarriage rate was significantly higher in the GnRHa group. It was observed a significant lower cost per cycle in the GnRHa group compared with the GnRHant group ($5,327.80 ± 387.30 vs. $5,900.40 ± 472.50). However, mean cost per pregnancy in the GnRHa was higher than in the GnRHant group ($19,671.80 ± 1,430.00 vs. $11,328.70 ± 907.20). Conclusion(s): Although the short controlled ovarian stimulation protocol with GnRHa on alternate days, rFSH, and rhCG microdose may lower the cost of an individual IVF cycle, it requires more cycles to achieve pregnancy. Clinical Trial Registration Number: NCT01468441. © 2013 by American Society for Reproductive Medicine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the months of January 2001 and 2002, female cachara Pseudoplatystoma fasciatum were selected during their first and second gonadal maturation (2 years and 7 months old and 3 years and 7 months old, respectively) with an of oocyte diameter of 937.5 mum (82.5% with central nuclei and 17.5% with peripheral nuclei). Nine females in first maturation received two doses of carp pituitary extract (CPE), 0.5 mg/kg and 5.0 mg/kg; seven received two doses of human chorionic gonadotropin (hCG), 5 and 10 IU/g; five received doses of 0.5 CPE mg/kg and 5 hCG IU/g (CPE+hCG); and four received 0.9% saline (saline). Nine females from CPE and seven from hCG presented oocytes with the same diameter at the moment of oocyte release (100% with germinal vesicle breakdown and fertilization rate of 53.44 +/- 18.3 and 54.81 +/- 11.8%; larvae number of 165,330 +/- 94.1 and 158,570 +/- 20.6, respectively). The five females from CPE+hCG did not respond to the hormonal treatment. The four females from the saline group did not ovulate. In January 2002, 6 of 15 selected females that were going through the second reproductive cycle received CPE (five received hCG and four received saline), showing oocyte diameters similar to the ones in the first maturation. At stripping, CPE females had an oocyte diameter of 1062.5 mum (the hCG females had oocyte diameters ranging from 937.5 to 1125.0 mum; fertilization rates of 56.08 +/- 30.9 and 81.90 +/- 17.3%; 364,547 +/- 244 and 633,129 +/- 190, larvae, respectively). The fertilization rates and larvae number were higher in the second gonad maturation, both for CPE and hCG. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)