37 resultados para Electroactive
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be linked to its potent antioxidant capacity. Superparamagnetic maghemite (gamma-Fe2O3), called surface-active maghemite nanoparticles (SAMNs) were surface-modified with curcumin molecules, due to the presence of under-coordinated Fe-III atoms on the nanoparticle surface. The so-obtained curcumin-modified SAMNs (SAMN@curcumin) had a mean size of 13 +/- 4 nm. SAMN@curcumin was characterized by transmission and scanning electron microscopy, UV/Vis, FTIR, and Mossbauer spectroscopy, X-ray powder diffraction, bulk susceptibility (SQUID), and relaxometry measurements (MRI imaging). The high negative contrast proclivity of SAMN@curcumin to act as potential contrast agent in MRI screenings was also tested. Moreover, the redox properties of bound curcumin were probed by electrochemistry. SAMN@curcumin was studied in the presence of different electroactive molecules, namely hydroquinone, NADH and ferrocyanide, to assess its redox behavior. Finally, SAMN@curcumin was electrochemically probed in the presence of hydrogen peroxide, demonstrating the stability and reactivity of bound curcumin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be correlated to its potent antioxidant capacity. Novel maghemite (gamma-Fe3O4) nanoparticles, characterized by a diameter of about 10 nm and possessing peculiar colloidal properties and surface interactions, called Surface Active Maghemite Nanoparticles (SAMN), were superficially modified with curcumin by simple incubation, due to the presence of under-coordinated Fe(III) atoms on nanoparticle surface. The resulting curcumin-modified SAMNs (SAMN@curcumin) were characterized by transmission electron microscopy (TEM), FTIR, Mossbauer, EPR and UV-Vis spectroscopy. The redox properties of bound curcumin were tested by electrochemistry. Finally, SAMN@curcumin was studied in the presence of different electroactive substances, namely hydroquinone, NADH and ferrocyanide, in order to assess its electrochemical behavior. Moreover, SAMN@curcumin was electrochemically tested in the presence of one of the most diffuse reactive oxygen specie, such as hydrogen peroxide, demonstrating its stability. SAMN@curcumin in which curcumin is firmly bound, but still retaining its redox features represents a feasible adduct: a magnetically drivable nano-bio-conjugate mimicking free Curcumin redox behavior. The proposed nanostructured material could be exploited as magnetic drivable curcumin vehicle for biomedical applications.
Resumo:
A glassy carbon electrode chemically modified with nickel nanoparticles coupled with reversed-phase chromatography with pulsed amperometric detection was used for the quantitative analysis of furanic aldehydes in a real sample of sugarcane bagasse hydrolysate. Chromatographic separation was carried out in isocratic conditions (acetonitrile/water, 1:9) with a flow rate of 1.0 mL/min, a detection potential of -50 mV vs. Pd, and the process was completed within 4 min. The analytical curves presented limits of detection of 4.0 × 10(-7) mol/L and 4.3 × 10(-7) mol/L, limits of quantification of 1.3 × 10(-6) and 1.4 × 10(-6) mol/L, amperometric sensitivities of 2.2 × 10(6) nA mol/L and 2.7 × 10(6) nA mol/L for furfural and 5-hydroxymethylfurfural, respectively. The values obtained in this sample by the standard addition method were 1.54 ± 0.02 g/kg for 5-hydroxymethylfurfural and 11.5 ± 0.2 g/kg for furfural. The results demonstrate that this new proposed method can be used for the quick detection of furanic aldehydes without the interference of other electroactive species, besides having other remarkable merits that include excellent peak resolution, analytical repeatability, sensitivity, and accuracy.