131 resultados para EXCITED-STATE PROCESSES
Resumo:
Glass samples with the composition (mol%) 80TeO(2)-10Nb(2)O(5)-5K(2)O-5Li(2)O, stable against crystallization, were prepared containing Yb3+, Tm3+ and Ho3+. The energy transfer and energy back transfer mechanisms in samples containing 5% Yb3+-5% Tm3+ and 5% Yb3+-5% Tm3+-0.5% Ho3+ were estimated by measuring the absorption and fluorescence spectra together with the time dependence of the Yb3+ F-2(5/2) excited state. A good fit for the luminescence time evolution was obtained with the Yokota-Tanimoto's diffusion-limited model. The up-conversion fluorescence was also studied in 5% Yb-5% Tm. 5% Yb-0.5% Ho and 5% Yb-5% Tm-0.5% Ho tellurite glasses under laser excitation at 975 nm. Strong emission was observed from (1)G(4) and F-3(2) Tm3+ energy levels in all samples. The S-5(2) Ho3+ emission was observed only in Yb3+Ho3+ samples being completely quenched in Yb3+/Tm3+/Tm3+ samples. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Tungstate fluorophosphate glasses of good optical quality were synthesized by fusion of the components and casting under air atmosphere. The absorption spectra from near-infrared to visible were obtained and the Judd-Ofelt parameters determined from the absorption bands. Transition probabilities, excited state lifetimes and transition branching ratios, were, determined from the measurements. Pumping with a 354.7 nm beam from a pulsed laser. resulted in emission at 450 nm. due to transition D-1(2)-->F-3(4) in Tm3+ ions and a broadband emission centered at approximate to 550 nm attributed to the glass matrix. When pumping at 650 nm, two emission bands at 450 nm (D-1(2)-->F-3(4)) and at 790 nm (H-3(4)-->H-3(6)) were observed. Excitation spectra were also obtained in order to understand the origin of both emissions. Theoretical and experimental lifetimes were determined and,the results were explained in terms of multiphonon relaxation. (C) 2003 American Institute of Physics.
Resumo:
Blue, green, red, and near-infrared upconversion luminescence in the wavelength region of 480-740 nm in Pr3+/Yb3+-codoped lead-cadmium-germanate glass under 980 nm diode laser excitation, is presented. Upconversion emission peaks around 485, 530, 610, 645, and 725 nm which were ascribed to the P-3(0)-H-3(J) (J = 4, 5, and 6), and P-3(0)-F-3(J) (J = 2, 3, and 4), transitions, respectively, were observed. The population of the praseodymium upper P-3(0) emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the F-2(7/2), energy-transfer Yb3+(2F(5/2))-Pr3+(H-3(4)), and excited-state absorption of Pr3+ ions provoking the (1)G(4)-P-3(0) transition. The dependence of the upconversion luminescence upon the Yb3+-concentration and diode laser power, is also examined, in order to subsidize the proposed upconversion excitation mechanism. (C) 2004 Elsevier B,V. All rights reserved.
EXAFS, SAXS and Eu3+ luminescence spectroscopy of sol-gel derived siloxane-polyethyleneoxide hybrids
Resumo:
Hybrid Eu3+-doped silica-poliethyleneoxide (PEO) nanocomposites with covalent bonds between the inorganic (siloxane) and organic (PEO) phases have been obtained by sol-gel process. These materials are transparent, flexible and present high Eu3+ luminescence output. Their luminescence properties, local environment around europium ions and structure have been investigated as a function of europium content. EXAFS measurements indicate that the increase in Eu-doping induces a decrease in Eu3+ coordination number. An increase in symmetry degree around the metal ion is also observed for increasing Eu3+ concentration, while non radiative decay paths from the D-5(0) excited state become more important. SAXS results suggest the preferential interaction of europium ions with ether-type oxygens of the polymer chains. However, the existence of interactions between the cations and the carbonyl groups from urea bridges located at the siloxane-PEO interface can not be excluded.
Resumo:
We use a (CO2)-C-13 laser as optical pumping source to search for new THz laser lines generated from (CH3OH)-C-13. Nineteen new THz laser lines (also identified as far-infrared, FIR) ranging from 42.3 mu m (7.1 THz) to 717.7 mu m (0.42 THz) are reported. They are characterized in wavelength, offset, relative polarization, relative intensity, and optimum working pressure. We have assigned eight laser lines to specific rotational energy levels in the excited state associated with the C-O stretching mode. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A general overview on the photochemical behaviour of [Ru(NH3)(5)L](2+) complexes (where L is a pi ligand) is presented. The proposed mechanisms and techniques employed for the study of these reactions are discussed. Emphasis is made on the mechanisms that allow the identification of the reactive excited state of the [Ru(NH3)(5)py](2+) complex.
Resumo:
Under physiological conditions B-form DNA is an exceedingly stable structure. However, experimental evidences obtained through nuclear magnetic resonance and fluorescence anisotropy suggest that the structure of the double helix fluctuates substantially. We describe photoacoustic phase modulation frequency measurements of ethidium bromide (Eb) with calf thymus, DNA. As in fluorescence phase modulation measurements, we used an intercalating dye as a probe; however, we monitored the triplet excited state lifetime at different ionic strengths. The triplet lifetime of Eb varied from about 0.30 ms, with no DNA present, to 20 ms, (at a DNA:Eb molar ratio of 5). With salt titration, this value falls, to about 2.0 ms. This result suggests, a strong coupling between the phenantridinium ring of the ethidium and the base pairs because of the stacking movement of the DNA molecule under salt effect. This, effect may be understood considering DNA as a polyelectrolyte. The counterions, in the solution shield the phosphate groups, reducing the electrostatic repulsion force between them, hence compacting the DNA molecule. The results from Fourier transform infrared demonstrated two important bands: 3187 cm(-1) corresponding to the symmetric stretching of the NH group of the bases, and 1225 cm(-1) corresponding to the asymmetric stretching of phosphate groups shifted toward higher wavenumbers, suggesting a proximity between the intercalant and base pairs and a modification of the DNA backbone state, both induced by salt accretion.
Resumo:
Spectroscopic properties of blends formed by bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) doped with Europium (III) acetylacetonate [Eu(acac)(3)], have been studied by photoacoustic spectroscopy (PAS) and photoluminescent (PL) spectroscopy. Emission and excitation spectra, excited state decay times, and quantum efficiency have been evaluated as well. PAS studies evidenced chemical interactions between the Europium complex and the PC/PMMA blend, which presented typical percolation threshold behavior regarding the Eu3+ content. PL spectra evidenced the photoluminescence of the Eu3+ incorporated into the blend. Photoluminescence property enhancement was observed for the composite in comparison with the precursor compound. Optimized emission quantum efficiency was observed for the 60/40 blend doped with 2% and 4% Europium (III) acetylacetonate. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The magnetic circular dichroism (MCD) of F2+ centers in KCl:SH- has been measured in absorption in the 1ssigma(g) --> 2p(y)pi(u) transitions at 493 and 509 nm, with fields up to 5 T and in the temperature range 1.5 K < T < 77 K. Within the limit of detection, no MCD is observed in the near infrared transition 1ssigma(g) --> 2psigma(u) as well as in both emissions 2ppi(u) --> 1ssigma(g) and 2psigma(u) --> 1ssigma(g). The optical detection of EPR in the F2+ ground state presents an isotropic single band with g = 1.965 +/- 0.007. The spin-lattice relaxation measured at H = 0.32 T is typical of a direct process T-1 = 4.3 x 10(-2_ coth (gmu(B)H/2k(B)T). The spectral variation of the MCD is calculated using perturbation theory to first order. The Hamiltonian includes the spin-orbit interaction in the 2ppi(u) excited state and the orbital molecular wave functions are obtained by a linear combination of 1s and 2p atomic orbitals. The calculated MCD is in good agreement with the observed one, for the spin-orbit interaction strength Pound(z) = 3.6 meV.
Resumo:
Eu3+ -doped titania-silica planar waveguides were prepared from tetraethylorthotitanate (TEOT) and modified silane 3-amino-propyltriethoxysilane (APTS). Films were deposited on borosilicate glass substrates by a dip-coating technique. The refractive index, the thickness and the total attenuation coefficient of the waveguides were measured at 632.8 and 1550 nm by prism coupling technique. Starting from pure titania films, the addition of modified silane leads to a decrease in the refractive index and an increase in thickness. Squared electric field simulation has shown that the light confinement in the waveguide increases with the silane content of the so]. Emission spectra present a broad emission band due to the modified silane and EU emission transitions arising mainly from the D-5(0) level to the F-7(J) (J = 0-4) manifolds. The dependence of transition intensities and excited state lifetimes on the initial composition and also on the heat treatment performed was interpreted in terms of structural changes occurring during the preparation process. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Cooperative energy transfer upconversion luminescence is investigated in Tb(3+)/Yb(3+)-codoped PbGeO(3)-PbF(2)-CdF(2) glass-ceramic and its precursor glass under resonant and off resonance infrared excitation. Bright UV-visible emission signals around 384, 415, 438 nm, and 473-490, 545, 587, and 623 nm are identified as due to the (5)D(3)((5)G(6))->(7)F(1) (J=6,5,4) and (5)D(4)->(7)F(1) (J=6,5,4,3) transitions, respectively, and readily observed. The results indicate that cooperative energy transfer between ytterbium and terbium. ions followed by excited state absorption are the dominant upconversion excitation mechanisms involved. Comparison of the upconversion process in a glass-ceramic sample and its glassy precursor revealed that the former present much higher upconversion efficiency. The dependence of the upconversion emission upon pump power, temperature, and doping content is also examined.
Resumo:
Energy-transfer excited upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+ -codoped PbGeO3-PbF2-CdF2 glass and glass-ceramic under infrared excitation is investigated. In Ho3+/Yb3+-codoped samples, green (545 nm), red (652 nm), and near-infrared (754 nm) upconversion emission corresponding to the S-5(2) (F-5(4)) -> I-5(8), F-5(5) -> I-5(8), and S-5(2)(F-5(4)) -> I-5(7) transitions, respectively, was observed. Blue (490 nm) emission assigned to the F-5(2,3) -> I-5(8) transition was also detected. In the Tb3+/Yb3+-codoped system, bright UV-visible emission around 384, 415, 438, 473-490, 545, 587, and 623 nm, identified as due to the D-5(3)((5)G(6)) -> F-7(J)(J = 6, 5, 4) and D-5(4) -> F-7(J)(J = 6, 5, 4, 3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicated that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The mechanism involved in the Tm(3+)((3)F(4)) -> Tb(3+)((7)F(0,1,2)) energy transfer as a function of the Tb concentration was investigated in Tm:Tb-doped germanate (GLKZ) glass. The experimental transfer rate was determined from the best fit of the (3)F(4) luminescence decay due to the Tm -> Tb energy transfer using the Burshtein model. The result showed that the 1700 nm emission from (3)F(4) can be completely quenched by 0.8 mol% of Tb(3+). As a consequence, the (7)F(3) state of Tb(3+) interacts with the (3)H(4) upper excited state of TM(3+) slighting decreasing its population. The effective amplification coefficient beta(cm(-1)) that depends on the population density difference Delta n = n((3)H(4))-n((3)F(4)) involved in the optical transition of Tm(3+) (S-band) was calculated by solving the rate equations of the system for continuous pumping with laser at 792 nm, using the Runge-Kutta numerical method including terms of fourth order. The population density inversion An as a function of Tb(3+) concentration was calculated by computational simulation for three pumping intensities, 0.2, 2.2 and 4.4 kWcm(-2). These calculations were performed using the experimental Tm -> Tb transfer rates and the optical constants of the Tm (0.1 mol%) system. It was demonstrated that 0.2 mol% of Tb(3+) propitiates best population density inversion of Tin(3+) maximizing the amplification coefficient of Tm-doped (0.1 mol%) GLKZ glass when operating as laser intensity amplification at 1.47 mu m. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The kinetics of the hexacyanoferrate(III)-N,N′-dimethyl-4,4′-bipyridinium radical (MV+) reaction was studied by a laser flash photolysis technique. The radical was generated, in the presence of Fe(CN)6 3-, by quenching the excited state *Ru(bpy)3 2+ with MV2+. The second-order rate constant for the Fe(CN)6 3--MV+ reaction is (7.6 ± 0.5) × 109 M-1 s-1 at 23°C and ionic strength 0.10 M. Comparison with the rate constants calculated for the diffusion-controlled reaction (4.7 × 109 M-1 s-1) and the activation-controlled reaction (5.2 × 1012 M-1 s-1, on the basis of self-exchange rate constants of 8.0 × 105 M-1 s-1 and 1.9 × 104 M-1 s-1 for the MV2+/+ and Fe(CN)6 3-/4- couples, respectively) leads to the conclusion that the Fe(CN)6 3--MV+ reaction is diffusion controlled. The rate constant for the Fe(CN)6-MV2+ reaction, calculated from the rate constant for the Fe(CN)6 3--MV+ reaction and the appropriate equilibrium constant, is 2.4 × 10-5 M-1 s-1 at 23°C and ionic strength 0.10 M. Microscopic reversibility considerations require that the Fe(CN)6 4--MV2+ reaction be controlled by the dissociation of the successor complex Fe(CN)6 3-|MV+. The thermal and optical electron transfers in the ion pair Fe(CN)6 4-|MV2+ and in related systems are analyzed and discussed. © 1982 American Chemical Society.
Resumo:
Eu3+ fluorescence spectroscopy was used as a probe to study the changes in local arrangements of tin oxyhydroxide precipitate → sol → gel → glass conversion. Electronic transition intensities and 5D0 excited state lifetime variations were followed during the entire process. Adsorption of Eu3+ ions on the colloid and changes of chemical interactions occurring in each step are described. © 1992 Elsevier Science Publishers B.V. All rights reserved.