71 resultados para Direct energy conversion.
Resumo:
In this paper a hybrid solid oxide fuel cell (SOFC) system is analyzed. This system applies a combined cycle utilizing gas turbine associated to a SOFC for rational decentralized energy production. Initially the relative concepts about the fuel cell are presented, followed by some chemical and technical informations such as the change of Gibbs free energy in isothermal fuel oxidation (or combustion) directly into electricity. This represents a very high fraction of the lower heating value (LHV) of a hydrocarbon fuel. In the next step a methodology for the study of SOFC associated with a gas turbine system is developed, considering the electricity and steam production for a hospital, as regard to the Brazilian conditions. This methodology is applied to energetic analysis. Natural gas is considered as a fuel. In conclusion, it is shown by a Sankey Diagram that the hybrid SOFC system may be an excellent opportunity to strengthen the decentralized energy production in Brazil. It is necessary to consider that the cogeneration in this version also is a sensible alternative from the technical point of view, demanding special methods of design, equipment selection and mainly of the contractual deals associated to electricity and fuel supply.
Resumo:
The pulsating combustion process has won interest in current research due to indications that its application in energy generation can offer several advantages, such as: fuel economy, reduced pollutants formation, increased rate of convective heat transfer and reduced investment, when compared with conventional techniques. An experimental study has been conducted with the objective of investigating the effects of combustion driven acoustic oscillations in the emission rates of combustion gases, especially carbon monoxide and nitrogen oxides. The experiments were conducted in a water-jacketed 1-m long by 25-cm internal diameter stainless steel vertical tube. The combustor operated with liquefied petroleum gas (LPG) in both oscillatory and non oscillatory conditions, under the same input conditions. Part of the reactant mixture was excited acoustically, before the burner exit, by a speaker positioned strategically. The burner was aligned with the chamber longitudinal axis and positioned at its bottom. The experiments were conducted for 0.16 g/s of LPG burning in stoichiometric equivalence ratio. The main conclusions were: a) the pulsating combustion process produces more uniform fuel/air profile than the non pulsating process, b) close to stoichiometric equivalence ratio the pulsating combustion process generates higher rates of NO x; c) the frequency has a strong influence in NO x emission, but the pressure amplitude has a weak influence; d) the presence of the acoustic field may change drastically the combustion gas emissions in diffusion flames, but in pre-mixed flames the influence is not as strong.
Resumo:
Cooperative energy-transfer upconversion luminescence in Tb 3+/Yb 3+-codoped PbGeO 3-PbF 2-CdF 2 vitroceramic and its precursor glass under resonant and off-resonance infrared excitation, is investigated. Bright UV-visible emission signals around 384, 415, 438 nm, and 473-490, 545, 587, and 623 nm, identified as due to the 5D 3( 5G 6 → 7F J(J=6,5,4) and 5D 4 → 7F J(J=6,5,4,3) transitions, respectively, were readily observed. The results indicate that cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The comparison of the upconversion process in a vitroceramic sample and its glassy precursor revealed that the former present much higher upconversion efficiency. The dependence of the upconversion emission upon pump power, temperature, and doping content is also examined.
Resumo:
In the spatial electric load forecasting, the future land use determination is one of the most important tasks, and one of the most difficult, because of the stochastic nature of the city growth. This paper proposes a fast and efficient algorithm to find out the future land use for the vacant land in the utility service area, using ideas from knowledge extraction and evolutionary algorithms. The methodology was implemented into a full simulation software for spatial electric load forecasting, showing a high rate of success when the results are compared to information gathered from specialists. The importance of this methodology lies in the reduced set of data needed to perform the task and the simplicity for implementation, which is a great plus for most of the electric utilities without specialized tools for this planning activity. © 2008 IEEE.
Resumo:
The Pt-Ru/C materials of this study were prepared by a microemulsion method with fixed water to surfactant molar ratio and heat treated at low temperatures, to avoid changes in the average particle size, in different atmospheres. All samples were characterized by X-ray diffraction (XRD) and the mean crystallite size was estimated by using Scherrer's equation. Catalysts morphology was characterized by transmission electron microscopy (TEM). Average composition was obtained by energydispersive X-ray analysis (EDX). The general electrochemical behavior was evaluated by cyclic voltammetry in 0.5 M sulfuric acid and the electrocatalytic activity towards the oxidation of methanol was studied in 0.5 M methanol acid solutions by potential sweeps and chronoamperometry. Oxidation of adsorbed CO was used to estimate the electrochemical active area and to infer the surface properties. ©The Electrochemical Society.
Resumo:
PtFe/C nanocatalysts of different compositions and nearly constant particle size were prepared by a microemulsion method. Crystallite sizes and degree of alloying were determined by X-ray diffraction. Particle size and distribution were characterized by transmission electron microscopy and average composition was determined by energy dispersive X-ray analysis. Measurements of electrocatalytic activity for oxygen reduction were done using the rotating disk electrode technique in O2 saturated 0.5 mol L-1 sulfuric acid solutions, at room temperature. For all catalysts oxygen reduction begins at ̃ 0.90V. Tafel plots show slopes of c.a. 60 and 120 mV dec in the regions of low and high overpotentials, respectively. The best results for the ORR were obtained for the PtFe/C catalyst of composition Pt:Fe 70:30. This catalyst was also found to exhibit the largest methanol tolerance. © The Electrochemical Society.
Resumo:
This work analyses the recuperation of the energy of Municipal Solid Waste (MSW) through the incineration process. It considers the up to date tendency of segregation (separation) of plastic, paper and cardboard, glass and metals and their influence in the fluxes of mass and energy in the incineration system of MSW. For its development was used information related to the generation of MSW in Bauru city and the Combust software. The results so obtained allowed the estimation of the Caloric power of the typical MSW and also of this residue when one considers the separations of paper/cardboard and plastic for recycling.
Resumo:
This paper presents the development and the experimental analysis of a new single-phase hybrid rectifier structure with high power factor (PF) and low harmonic distortion of current (THDI), suitable for application in traction systems of electrical vehicles pulled by electrical motors (trolleybus), which are powered by urban distribution network. This front-end rectifier structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The proposed structure is composed by an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of composing the input line current waveform assuring high power factor (HPF) and low THDI, as well as ordinary front-end converter. However, the power rating of the switched converter is about 34% of the total output power, assuring robustness and reliability. Therefore, the proposed structure was named single-phase HPF hybrid rectifier. A prototype rated at 15kW was developed and analyzed in laboratory. It was found that the input line current harmonic spectrum is in accordance with the harmonic limits imposed by IEC61000-3-4. The principle of operation, the mathematical analysis, the PWM control strategy, and experimental results are also presented in this paper. © 2009 IEEE.
Resumo:
In the last 20 years immense efforts have been made to utilize renewable energy sources for electric power generation. This paper investigates some aspects of integration of the distributed generators into the low voltage distribution network. An assessment of impact of the distributed generators on the voltage and current harmonic distortion in the low voltage network is performed. Results obtained from a case study, using real-life low voltage network, are presented and discussed.
Resumo:
Electrical energy from photovoltaic panels (PV) has became an increasing viable alternative because of the great concern for environmental preservation and the possibility of the reduction of the conventional fuels, and this natural energy source is free, abundant and clean. In addition, Brazil is a privileged country because of the high levels of irradiation throughout its territory all over the year. Thus the exploitation of the energy from PV is one of the best alternatives to overcome the supply electrical energy issues. However, nowadays the energy conversion efficiency is low and the initial costs are high for these energy systems. Therefore, in order to increase the efficiency of these systems the extraction of the maximum power point (MPP) from PV is extremely necessary, and it is done using the maximum power point tracking (MPPT) techniques. The MPP of the PV varies non linearly with the environmental conditions and several MPPT techniques are available in literature, and this paper presents a careful comparison among the most usual techniques, doing meaningful comparisons with respect to the amount of energy extracted, PV voltage ripple, dynamic response and use of sensors, considering that the models are implemented via MatLab/Simulink®. © 2010 IEEE.
Resumo:
The economic viability of the electrical power generation using biogas from swine wastes, was determined. The analyzed biodigester is a continuous tubular model with brick concrete duct and plastic covering with a gasometer, in which the waste of 2.300 fattening pigs are deposited daily. The initial investment estimate for the installation was R$ 51.537, the system annual costs were R$ 5.700, for maintenance, R$ 4.400 for depreciation and R$ 1.370 for interests. It was found that an average consumption of 28 kW-hour-1 is the minimum that the system must reach to be economically feasible.
Resumo:
This paper presents a briefly review, some trends and perspectives in the field of Photovoltaic energy conversion, which is considered to be the most important renewable energy source in few years, in the coming decades. The power electronics plays a fundamental role in this process, developing systems each times more competitive, efficient, reliable, and also reducing costs and reducing the payback time. Some trends are visible, which are the use of Silicon Carbide devices in PV inverters, the use of integrated inverter structures, the integration of power converters into the PV module or the use of few PV series connection, the development of thinner and more efficient solar cells. Moreover, the discussion about the necessity of MPPT and anti-island schemes are presented, mainly considering the expected growth of grid-tied applications. © 2011 IEEE.
Resumo:
This paper presents an efficiency investigation of an isolated high step-up ratio dc-dc converter aimed to be used for energy processing from low-voltage high-current energy sources, like batteries, photovoltaic modules or fuel-cells. The considered converter consists of an interleaved active clamp flyback topology combined with a voltage multiplier at the transformer secondary side capable of two different operating modes, i.e. resonant and non-resonant according to the design of the output capacitors. The main goal of this paper is to compare these two operating modes from the component losses point of view with the aim of maximize the overall converter efficiency. The approach is based on losses prediction using steady-state theoretical models (designed in Mathcad environment), taking into account both conduction and switching losses. The models are compared with steady-state simulations and experimental results considering different operating modes to validate the approach. © 2012 IEEE.
Resumo:
Fuel cells are electrochemical energy conversion devices that convert fuel and oxidant electrochemically into electrical energy, water and heat. Compared to traditional electricity generation technologies that use combustion processes to convert fuel into heat, and then into mechanical energy, fuel cells convert the hydrogen and oxygen chemical energy into electrical energy, without intermediate conversion processes, and with higher efficiency. In order to make the fuel cells an achievable and useful technology, it is firstly necessary to develop an economic and efficient way for hydrogen production. Molecular hydrogen is always found combined with other chemical compounds in nature, so it must be isolated. In this paper, the technical, economical and ecological aspects of hydrogen production by biogas steam reforming are presented. The economic feasibility calculation was performed to evaluate how interesting the process is by analyzing the investment, operation and maintenance costs of the biogas steam reformer and the hydrogen production cost achieved the value of 0.27 US$/kWh with a payback period of 8 years. An ecological efficiency of 94.95%, which is a good ecological value, was obtained. The results obtained by these analyses showed that this type of hydrogen production is an environmentally attractive route. © 2013 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)