329 resultados para DOPED GLASS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on orange-to-blue frequency upconversion (UC) in Pr(3+) doped chalcogenide glass (Ga(10)Ge(25)S(65)) doped with Ag(2)S and heat treated under different conditions to nucleate silver nanoparticles (NPs). The experiments were performed using 7 ns pulses from a dye laser that operates at similar to 590 nm, in resonance with the (3)H(4)->(1)D(2) transition of Pr(3+) ions. The enhancement observed in the UC emission at similar to 494 nm, ascribed as (3)P(0)->(3)H(4) transition of the Pr(3+) ion, is attributed to the large local field acting on the emitting ions due to the presence of the metallic NPs. (C) 2008 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the observation of frequency upconversion in fluoroindate glasses with the following compositions: (mol%) (39 - x)InF3-20ZnF2-20SrF2-16BaF 2-2GdF3-2NaF-1GaF3-xNdF3 (x = 0.05, 0.1, 0.5, 1, 2, 3). The excitation source was a dye laser in resonance with the 4I9/2→(2G5/2, 2G7/2) transition of the Nd3+ ions. The upconverted fluorescence spectra show emissions from ∼ 350 to ∼ 450 nm, corresponding to transitions 4D3/2→4I9/2 ;4D3/2→4I11/2; 2P3/2→ 4I9/2; 4D3/2→4I13/2; 2P3/2→4I11/2; 4D3/2→4I15/2; and 2P3/2 → 4I13/2. The dependence of the fluorescence signals on the laser intensity indicates that two laser photons participate in the process. The temporal behavior of the signal indicates that energy transfer among the Nd3+ ions is the main mechanism which contributes to upconversion at 354 and 382 nm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Non-linear absorption is observed in Er3+-doped fluoroindate glass (in mol% 37InF2:20ZnF2:20SrF2:16BaF2:2GdF2: 2NaF:1GaF3:2ErF3) when the sample is irradiated with a CW laser emitting at 650 nm. An intensity dependence of the optical transmittance is detected. Saturation and sequential absorption of two photons are responsible for the decrease of 50% in the transmittance. The results are explained by simple models which are solved based on rate-equations for the populations of energy levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonlinear absorption and amplification of a probe laser beam can be controlled by adjustment of the intensity-modulation frequency and the wavelength of a pump laser beam. A demonstration of this effect in Er3+-doped fluoroindate glass is presented. The results show maximum amplification of the probe beam (∼12%) when a pump laser emitting 16 mW of power is modulated at ∼30 Hz. In the limit of low modulation frequencies, or cw pumping, induced absorption of the probe beam is the dominant nonlinear process. © 1999 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiphonon assisted frequency upconversion was observed in a Nd3+-doped fluoroindate glass pumped at 866 nm. A near-infrared upconverted emission at 750 nm with a peculiar linear dependence with the laser intensity was observed and explained. The intensity of the upconverted emission experienced a 40-fold enhancement when the sample's temperature was varied from 298 to 498 K. A rate equation model that includes light pumping and multiphonon absorption via thermally coupled electronic excited states of Nd3+ was used, describing quite well the experimental results. © 2001 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental results are reported which show a strong evidence of energy transfer between Ho 3+ ions in a fluoroindate glass excited by a pulsed laser operating at 640 nm. We identified the origin of the blue and green upconverted fluorescence observed as being due to a Ho 3+-Ho 3+ pair interaction process. The dynamics of the fluorescence revealed the pathways involved in the energy transfer assisted upconversion process. © 2002 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated near-infrared-to-blue upconversion from thulium (Tm 3+) doped in tellurite glasses upon continuous wave excitation near 800 nm. We observed an enhancement of over two orders of magnitude of the upconverted emission at ∼480nm when neodymium (Nd 3+) ions were codoped with Tm 3+ ions. For comparison, using a Tm 3+:Nd 3+ codoped fluorozirconate glass as a reference material we observed a 40-fold enhancement of the blue emission. Analysis of the blue emission for samples with different doping levels of Nd 3+ ions showed that energy transfer between Nd 3+ and Tm 3+ is the mechanism responsible for the enhancement in upconversion. © 2002 American Institute of Physics. © 2002 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Energy transfer processes between Er3+ and Tm3+ were investigated examining the frequency upconversion emissions in a fluoroindate glass pumped at 790 nm. A 60-fold enhancement in the emission at ≈670 nm originating from Er3+ was observed when Tm3+ at concentration of 2% was introduced in a sample containing 2% of Er3+. The results are explained considering the influence of cross-relaxation processes between the active ions. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optical absorption and fluorescence were investigated in Tm3+ doped fluoroindate glass. The spectroscopic parameters for transitions in the 4f11 configuration were determined. The fluorescence study revealed the origin of the frequency upconversion process as well as allowed to quantify the interaction between Tm3+ ions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we report on visible upconversion emission in Er 3+-, and Ho3+-doped PbGeO3-PbF 2-CdF2-based transparent glass ceramics under 980 nm infrared excitation. In erbium-doped vitroceramic samples, blue(410 ran), green(530, and 550 nm) and red(660 nm) emission signals were generated, which were identified as due to the 2H9/2, 2H 11/2, 4S3/2, and 4F9/2 transitions to the 4I15/2 ground-state, respectively. Intense red(650 nm) upconversion emission corresponding to the 5F5 - 5I8 transition and very small blue(490 nm) and green(540 nm) signals assigned to the 5F 2,3 - 5I8 and 4S2, 5F4 - 5I8 transitions, respectively, were observed in the holmium-doped samples. The 540 nm is the dominant upconversion signal in Ho3+-doped vitroceramics under 850 nm excitation. The dependence of the upconversion processes upon pump power and doping concentration are also investigated, and the main routes for the upconversion excitation processes are also identified. The comparison of the upconversion process in transparent glass ceramics and the precursor glass was also examined and the results revealed that the former present higher upconversion efficiencies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blue, green, red, and near-infrared upconversion luminescence in the wavelength region of 480 - 740 nm in Pr3+/Yb3+-codoped lead-cadmium-germanate glass under 980 nm diode laser excitation, is presented. Upconversion emission peaks around 485, 530, 610, 645, and 725 nm which were ascribed to the 3P0 - 3HJ (J=4, 5, and 6), and 3P0 - 3FJ (J=2, and 3,4), transitions, respectively, were observed. The population of the praseodymium upper 3P0 emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the 2F7/2, energy-transfer Yb3+(2F 5/2) Pr3+(3H4), and excited-state absorption of Pr3+ ions provoking the 1G4 - 3P0 transition. The dependence of the upconversion luminescence upon the Yb3+-concentration and diode laser power, is also examined, in order to subsidize the proposed upconversion excitation mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spectroscopic properties of Tm3+-doped fluoroindate glasses (FIG) were described by single wavelength pumping in the red region. The Judd-Ofelt (J-O) theory was used to obtain the quantum efficiency of the 4f-4f transitions and other spectroscopic parameters. The dynamics of the fluorescence was investigated and energy transfer (ET) processes among Tm3+ ions were studied. The results indicate that a two-step one-photon absorption process is responsible for the ultraviolet upconversion (UC) emissions, and dipole-dipole interaction provides the main contribution for ET rate is equal to the decay rate of noninteracting among active ions.