57 resultados para DNA repair doublestrandbreak toxicology histone h2ax chromatin


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The role of epigenetic regulation in inflammatory diseases such as periodontitis is poorly known. The aim of this study was to assess whether Porphyromonas gingivalis lipopolysaccharide (LPS) can modulate gene expression levels of the some enzymes that promote epigenetic events in cultures of the human keratinocytes and gingival fibroblasts. In addition, the same enzymes were evaluated in gingival samples from healthy and periodontitis-affected individuals. Materials and methods: Primary gingival fibroblast and keratinocyte (HaCaT) cultures were treated with medium containing P. gingivalis LPS or P. gingivalis LPS vehicle for 24 h. After this period, cell viability was assessed by MTT test and total RNA extracted to evaluate gene expression levels of the following enzymes by qRT-PCR: DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3a (DNMT3a), histone demethylases Jumonji domain containing 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX). To evaluate gene expression in healthy and periodontitis-affected individuals, total RNA was extracted from biopsies of gingival tissue from healthy and periodontitis sites, and gene expression of DNMT1, DNAMT3a, JMJD3, and UTX was evaluated by qRT-PCR. Results: No significant differences were found in the gene expression analysis between healthy and periodontitis-affected gingival samples. The results showed that LPS downregulated DNMT1 (p < 0. 05), DNMT3a (p < 0. 05), and JMJD3 (p < 0. 01) gene expression in HaCaT cells, but no modulation was observed in gingival fibroblasts. Conclusion: P. gingivalis LPS exposure to human HaCaT keratinocytes downregulates gene expression of the enzymes that promote epigenetic events. Clinical relevance: The advance knowledge about epigenetic modifications caused by periodontopathogens may to possibly led to the development of new periodontal therapies. © 2012 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Genética) - IBB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problem The most common DNA lesion generated by oxidative stress (OS) is 7, 8-dihydro-8-oxoguanine (8-oxoG) whose excision repair is performed by 8-oxoguanine glycosylase (OGG1). We investigated OGG1 expression changes in fetal membranes from spontaneous preterm birth (PTB) and preterm premature rupture of the membranes (pPROM) and its changes in vitro in normal fetal membranes exposed to OS inducer water-soluble cigarette smoke extract (CSE). Method of study DNA damage was determined in amnion cells treated with CSE by comet and FLARE assays. OGG1 mRNA expression and localization in fetal membranes from clinical specimens and in normal term membranes exposed to CSE were examined by QRT-PCR and by immunohistochemistry. Results DNA strand and base damage was seen in amnion cells exposed to CSE. OGG1 expression was 2.5-fold higher in PTB samples compared with pPROM (P=0.045). No significant difference was seen between term and pPROM or PTB and term. CSE treatment showed a nonsignificant decrease in OGG1. OGG1 was localized to both amnion and chorion with less intense staining in pPROM and CSE-treated membranes. Conclusion Increased OS-induced DNA damage predominated by 8-oxoG is likely to persist in fetal cells due to reduced availability of base excision repair enzyme OGG1. This can likely lead to fetal cell senescence associated with some adverse pregnancy outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)