90 resultados para DIETARY PROTEIN
Resumo:
Feathers are rich in amino acids and can be employed as a dietary protein supplement for animal feed. Microbial degradation is an alternative technology for improving the nutritional value of feathers. Other potential applications of keratinase include use in the leather industry, detergents and medicine as well as the pharmaceutical for the treatment of acne, psoriasis and calluses. A new keratinolytic enzyme production bacterium was isolated from a poultry processing plant. To improve keratinase yield, statistically based experimental designs were applied to optimize three significant variables: temperature, substrate concentration (feathers) and agitation speed. Response surface methodology demonstrated an increase in keratinolytic activity at temperature, agitation speed and substrate concentration of 26.6°C, 150 rpm and 2%, respectively. Liquid chromatography revealed the release of amino acids in the Bacillus amyloliquefaciens culture broth, thereby demonstrating the potential of feather meal in the animal feed industry. © Global Science Publications.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In order to evaluate some factors likely to be involved in the maternal and fetal growth impairment due to alimentary protein deficiency, the circulating levels of triiodothyronine (T 3) and thyroxine (T 4) were studied in 4 young (45-day-old) female rat groups: control and malnourished, both nonpregnant and pregnant; similarly schedules groups were studied using adult (100-day-old) rats. Circulating levels of T 4 were higher in nonpregnant, malnourished young rats in their corresponding controls. T 3 levels were higher in young malnourished animals and lower in adult malnourished animals, nonpregnant or pregnant, as compared to controls. Pups from young malnourished mothers showed significantly lower birth weights than those from controls. The present results suggest that there are age differences in thyroid function, as affected by protein-calorie malnutrition in pregnant and non-pregnant rats. On the other hand, the circulating thyroid hormone levels were not importantly affected by the mother dietary protein restriction under our experimental conditions.
Resumo:
Purpose – This paper aims to determine the effects of 11S globulin isolated from Chickpea (Cicer arietinum L.) on lipid metabolism in animals subjected to a hypercholesterolemic and hyperlipidemic diet and compared to the drug simvastatin. Design/methodology/approach – Thirty-six male Wistar rats, kept in individual cages and under appropriate conditions, were separated into groups that were fed a normal diet (STD) containing casein as protein source and according to AIN-93G; a high-cholesterol diet (HC), normal diet plus 1 per cent cholesterol and 0.5 per cent cholic acid and 20 per cent coconut oil; HC diet plus the isolated 11S globulin (300 mg/kg/day); and HC diet plus the simvastatin (50 mg/kg/day), both dissolved in saline and administered by gavage for 28 days. After this time, the animals were killed. Findings – The results indicated that the addition of 1 per cent cholesterol and 0.5 per cent cholic acid induced hypercholesterolemia in the animals without interfering with their weight gain. Analyses of total cholesterol (TC), HDL-cholesterol (HDL-C) and triglycerides (TG) in the plasma, and TC and TG in the liver were made. The results show that the protein isolated from chickpea, and given as a single daily dose, did not affect the levels of plasma TC and its fractions, although decreasing the TG levels. Unlike the simvastatin, the chickpea protein significantly reduced TC and TG in the liver relative to HC group. Originality/value – A single daily dose of 11S globulin from chickpea contributed as only as additional 2.8 per cent of dietary protein intake. These findings demonstrate that 11S chickpea protein acts as a functional agent in the lipid metabolism in addition to its nutritional properties.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Saúde Coletiva - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Three pens of male broiler chicks were raised under standard conditions and fed from 7 to 42 days of age three isocaloric diets each with 15.8; 19.6 and 19.5% of CP; and 51, 51, and 44% of CHO; and 6.5; 3.0 and 7.7% of fat, and designated as the low protein (LowCP), low lipid (LowL) and low carbohydrate (LowCHO) diets, respectively. Body weights and feed intake were monitored weekly and blood samples were collected at the same time for posterior analysis of hormone and metabolite content. Chickens fed the LowCP diet were characterized by a reduced body weight gain and feed intake and poorer feed conversion efficiency compared to those fed the LowL and LowCHO diets, which were very similar in this respect. Plasma corticosterone and glucose levels and creatine kinase activity were not significantly changed by diet composition. LowCP chickens were characterised by the lowest plasma T-4 and uric acid levels (indicative for reduced protein breakdown and lower protein ingestion) but highest plasma triglyceride levels (congruent with their higher fat deposition) compared to the LowL and LowCHO chickens. LowL chickens had on average higher plasma T-3 and free fatty acid levels compared to the LowCP and LowCHO chickens.In conclusion, a limited substitution of carbohydrate for fat in iso-nitrogenous, iso-energetic diets has no pronounced effects on plasma hormone and metabolite levels, except for the elevation in T-3 (may enhance glucose uptake) and free fatty acid levels in the plasma of the chickens fed the LowL diet. The protein content of the diet has a greater impact on zootechnical performance, and underlying endocrine regulation of the intermediary metabolism compared to the dietary lipid and CHO fraction. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The objective of the present study was to investigate the effects of dietary macronutrient ratio on energy metabolism and on skeletal muscle mRNA expression of avian uncoupling protein (UCP), thought to be implicated in thermogenesis in birds. Broiler chickens from 2 to 6 weeks of age received one of three isoenergetic diets containing different macronutrient ratios (low-lipid (LL) 30 v. 77 g lipid/kg-, low-protein (LP) 125 v. 197 g crude protein (N X 6.25)/kg; low-carbohydrate (LC) 440 v. 520 g carbohydrate/kg). LP chickens were characterised by significantly lower body weights and food intakes compared with LL and LC chickens (-47 and -38% respectively) but similar heat production/kg metabolic body weight, as measured by indirect calorimetry, in the three groups. However, heat production/g food ingested was higher in animals receiving the LP diet (+41%, P<0.05). These chickens also deposited 57% less energy as protein (P<0.05) and 33% more as fat. No significant differences in energy and N balances were detected between LL and LC chickens. The diets with the higher fat contents (i.e. The LP and LC diets) induced slightly but significantly higher relative expressions of avian UCP mRNA in gastrocnemius muscle, measured by reverse transcription-polymerase chain reaction, than the LL diet (88 and 90 v. 78% glyceraldehyde-3-phosphate dehydrogenase respectively, P<0.05). Our present results are consistent with the recent view that UCP homologues could be involved in the regulation of lipid utilisation as fuel substrate and provide evidence that the macronutrient content of the diet regulates energy metabolism and especially protein and fat deposition.
Resumo:
Background: Protein-calorie malnutrition (PCM) is the most common type of malnutrition. PCM leads to immunodeficiency and consequent increased susceptibility to infectious agents. In addition, responses to prophylactic vaccines depend on nutritional status. This study aims to evaluate the ability of undernourished mice to mount an immune response to a genetic vaccine (pVAXhsp65) against tuberculosis, containing the gene coding for the heat shock protein 65 from mycobacteria. Methods: Young adult female BALB/c mice were fed ad libitum or with 80% of the amount of food consumed by a normal diet group. We initially characterized a mice model of dietary restriction by determining body and spleen weights, hematological parameters and histopathological changes in lymphoid organs. The ability of splenic cells to produce IFN-gamma and IL-4 upon in vitro stimulation with LPS or S. aureus and the serum titer of specific IgG1 and IgG2a anti-hsp65 antibodies after intramuscular immunization with pVAXhsp65 was then tested. Results: Dietary restriction significantly decreased body and spleen weights and also the total lymphocyte count in blood. This restriction also determined a striking atrophy in lymphoid organs as spleen, thymus and lymphoid tissue associated with the small intestine. Specific antibodies were not detected in mice submitted to dietary restriction whereas the well nourished animals produced significant levels of both, IgG1 and IgG2a anti-hsp65. Conclusion: 20% restriction in food intake deeply compromised humoral immunity induced by a genetic vaccine, alerting, therefore, for the relevance of the nutritional condition in vaccination programs based on these kinds of constructs. © 2009 Ishikawa et al; licensee BioMed Central Ltd.